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ConDT: A 2D curve reconstruction algorithm based on a
constrained-neighbor proximity graph

J. Antony - M. Reghunath - S. B. Thayyil - R. Muthuganapathy

Abstract We introduce ConDT algorithm, a proximity-
based reconstruction method relying on Delaunay Tri-
angulation. The underlying proximity graph is referred
to as the ConDT graph. In addition to being simple, the
algorithm could successfully handle various challenging
cases where classical reconstruction algorithms often
struggle. Outlier removal is done in the post-processing
phase using Interquartile Range (IQR) criteria, com-
puted for the specific instance of the proximity graph.
Relying on the recent benchmark on 2D reconstruction,
we show that our method works better or is on par with
the state-of-the-art methods.

Keywords Curve reconstruction - Delaunay triangu-
lation - epsilon sampling - outlier handling

1 Introduction

Given a planar point set S € R? where S = {vy,...,v,}
sampled from an unknown curve X, the goal is to ob-
tain “a piece-wise linear reconstruction of the curve”, C
from S that best approximates X'. Curve reconstruction
has received significant attention in computational ge-
ometry and computer graphics over the past two decades.
Various algorithms [24] have been proposed to tackle
this problem under different assumptions and condi-
tions.
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Many of the early curve reconstruction algorithms
assume that the input point set is sampled densely from
a simple, smooth curve. Some well-known classical algo-
rithms in this category include Crust, S-skeleton, NN-
Crust, and a-shapes. In general, an input point set may
exhibit characteristics such as non-uniform sampling,
noise, and outliers. Meanwhile, the resulting curves can
feature self-intersections, sharp corners, open ends, or
disconnected components. Classical algorithms that pro-
vide theoretical guarantees assuming e-sampling, may
fail when the input point set contains the characteris-
tic(s) mentioned above.

To handle these, newer algorithms have often re-
sorted to tuning multiple parameters - a challenging
task in general. Algorithms that do not use any param-
eter or use only a single parameter have difficulties in
handling all the mentioned characteristics, as can be
seen from Table 1 in [24]. In particular, handling multi-
ple components, sharp corners, and outliers is challeng-
ing for such algorithms (refer to Table 1 in [24]).

Even the recent work [17] focuses only on manifold
curves on a clean point set and is unable to handle
outliers, open curves, curves with multiple components
and non-manifold curves. Self-intersection is a common
feature found in many planar curves. However, only a
few methods [13,31,27] address its reconstruction.

This work, tested on the publicly available bench-
mark [24], with the following contributions:

— Introduces ConDT graph - a basic proximity graph
structure which can be generated in a single-step
parallel procedure from DT(S).

— Algorithm is demonstrated to handle self-intersections,

multiple components, sharp corners (without any
parameters), and open curves (with a single param-
eter).
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— Outliers are handled using a dynamically generated
IQR parameter specific to the ConDT proximity
graph.

2 Related work

Edelsbrunner proposed a Delaunay triangulation-based
parametric method to produce a-shape [11], which char-
acterizes the shape of a point set. Although it was not
originally designed for curve reconstruction, its 3D ver-

sion [11] was later shown to be applicable for this pur-
pose.
Crust algorithms [1,2] use a combination of De-

launay triangulation and Voronoi diagram to produce
closed/open curves. In Crust, a dense sampling based
on medial axis transform was introduced by Amenta et
al. [1], which is widely considered as a seminal work
used to ensure theoretical guarantee of a reconstructed
curve. Reconstruction using nearest neighbor graph with
theoretical guarantee is presented in NN-Crust [7]. In
Power Crust [2], a subset of Voronoi vertices known as
poles is used to build a power diagram, which divides
the plane into interior and exterior cells.

Noise filtering of a given point set and introducing
new points, followed by pruning and reconstruction us-
ing NN-Crust, is proposed by Cheng et al. [5]. Mehra
et al. [18] proposed a visibility operator on the convex
hull of a noisy point set and used the visibility informa-
tion to perform both curve and surface reconstructions.
Feiszli et al. [12] introduced a non-parametric denois-
ing strategy for reconstructing a curve while preserving
sharp corners. However, the three curve reconstruction
algorithms mentioned above do not reconstruct open
curves, disconnected components, or curves with self-
intersections, and they are not designed to handle out-
liers.

Lee [15] proposed a reconstruction method based
on the moving least squares concept, specifically de-
signed for noisy point sets to compute curves without
self-intersections. Shape Hull [29] removes the edges of
a Delaunay triangulation based on the position of the
circumcenter of triangles to construct a simple closed
divergent curve. Another Delaunay triangulation-based
method, EC-Shape, uses the empty circle approach for
outer boundary detection [20] and hole detection [19].
EC-Shape can reconstruct non-divergent curves but not
open curves.

The Water-Distribution-Model (WDM) Crust [29]
is based on the Voronoi diagram and handles outliers.
Crawl [28] reconstructs closed/open curves with dis-
connected components and multiple holes; however, it
does not handle noisy point sets. The Optimal Trans-
port Cost method proposed by de Goes et al. [13] is

a greedy method designed to minimize the increase in
transport cost for noisy point sets. Wang et al. [31] pro-
posed a quad-tree method with smoothing concepts to
reconstruct a curve from a noisy point set with out-
liers. Most of the existing methods [10][29][20] are de-
signed for simple closed curve reconstruction, whereas
only a few of them [27][13][31] reconstruct both open
and closed curves. A comprehensive survey and bench-
marking of various algorithms for curve reconstruction
are discussed by Ohrhallinger et al. [24]. This bench-
mark includes about 15 reconstruction algorithms, in-
cluding the recent ones. Recently, deep learning ap-
proaches have also been explored for curve reconstruc-
tion, where networks are trained to predict and fit uni-
form B-splines to given point sets[4]

While several algorithms address aspects of curve
reconstruction, it remains challenging to develop a gen-
eralized algorithm that handles all features: closed /open
curves, disconnected components, self-intersections, mul-
tiple holes, and sharp corners, while also handling noise
and outliers.

Although some reconstruction algorithms [20] [29][28]
detect some of the mentioned features, they are not
designed for handling noise. Algorithms specifically de-
signed for handling noise [5] [18] [12] do not reconstruct
open curves, disconnected components, or curves with
self-intersections, and are not designed for handling out-
liers. Lee [15] designed a reconstruction algorithm for
noisy point sets for both closed and open curves, but
it is not capable of detecting self-intersections. F. de
Goes et al. [13] and Wang et al. [31] claim to handle
noise, self-intersections, and outliers, but their results
on clean input point sets are very poor. Additionally,
many algorithms have multiple parameters, making it
tedious to synchronize and tune them.

3 Overview

Key concepts with regard to curve reconstruction such
as medial axis, local feature size, and e-sampling are
well established in the literature and can be found in
the seminal work by Amenta et al[l]. A quick review
of these concepts can be found in Section 1 of the Sup-
plementary. Now we introduce ConDT, the proximity
graph employed in our method.

3.1 ConDT Proximity Graph

A ConDT graph (Constrained Natural Neighborhood
Delaunay Triangulation) is a subgraph of a Delaunay
Triangulation (DT) of a point set, S. For each point p,
let EN(p) denote the set of edges directly connected to
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ConDT: A 2D curve reconstruction algorithm based on a constrained-neighbor proximity graph 3

(d)

Fig. 1: Visualization of basic ConDT proximity graph construction (a) Input point set of bird and its DT (b)
Shortest edge set say A from the natural neighbourhood of each point shown in red color (c¢) Second shortest
edge set, say B in green color (d) Combining red and green edges to obtain our proximity graph ConDT which is

(AUB)

(a) (b) (c)

() (e) ®

Fig. 2: Tllustration of the proposed reconstruction algorithm on an input point set with multiple components and
open curves in output. (a)Input point set (b) DT of the input point set (c¢) For an input point, p (in cyan), natural
neighbours (shown in blue) with the selected edges (in green) (d) Illustration for a terminal point of an open curve
(e) DT with reconstructed edges (in green) (f) Reconstructed output

p in the DT, referred as natural neighborhood edges.
ConDT graph is formed by retaining only the shortest
and second shortest edges from EN(p) for each point
p, resulting in a simplified and filtered graph formally
defined as ConDT(S). This proximity graph produces
a valid reconstruction when the input point set is well-
sampled and free of outliers or noise.

Fig. 1 illustrates the construction of the ConDT
graph. Fig. 1 (a) shows an input point set representing
a bird shape adapted from the benchmark with addi-
tional points to ensure sufficient sampling. The process
involves selecting the shortest edge shown in red in Fig.
1 (b) and the second shortest edge shown in green in
Fig. 1 (c) from the natural neighborhood of each point.
These selected edges are then combined into a set to
form the resulting ConDT proximity graph, as depicted
in Fig. 1 (d). This construction can be done in parallel
across all the input points.

4 Method

The proposed method is outlined in the Algorithm 1.
We start by constructing the DT of the input point
set S. Identify the set of edges, EN(p) in the natural

neighborhood of each point p in the DT. From the set
of edges in EN(p), we retain only the first two shortest
edges connected to each point to obtain ConDT(S). To
take care of open curves (if any), one of the retained
edges is to be removed based on a local uniformity pa-
rameter u. This parameter ensures the elimination of
the longer edge by enforcing an allowable edge length
ratio at each vertex.

The working of this algorithm is demonstrated with
an example in Fig. 2. The input point set is shown in
Fig. 2a along with its DT in Fig. 2b. For an input point
p (in cyan), natural neighbourhood edges (in blue) and
the selected edges (in green) are depicted in Fig. 2c.
Illustration for another point is shown in Fig. 2d. in
which only one green edge is selected, as the open curve
criteria based on u parameter satisfies here. This basic
reconstruction step is implemented in parallel for all
points.

Instead of using a fixed value for u parameter, it
can be adaptively computed on the go based on local
neighbourhood as discussed in section 4.1

If reconstruction is limited to manifold curves, then
we can handle non-manifold vertices in a post-processing
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step (Line 11). This procedure is illustrated in Algo-
rithm 2 and discussed in section 4.2.

Outlier removal is done (Line 12) as a post-processing
task and is illustrated in section 4.3.

Algorithm 1 ConDT(S)

Input: A planar point set S C R? representing the curve C,

local uniformity parameter w.

Output: Reconstructed polygonal approximation, 9O of the

curve C.

1: Compute the 2D Delaunay triangulation, DT'(S).

2: for each point p; € S in parallel do

3: Collect the set of 1-ring vertices, N(p;), incident to
p: in DT(S).

4: Collect the set of edges EN(p;) connecting p; to each
of the vertices in N'(p;).

5: Retain the two shortest edges, e; and ez, in EN(p;).

6: if max(e1,e2) > u X min(er, e2) then
7 Retain only the shortest edge, min(eq,e2), in
EN(p:).

8: Combine the retained edges in EN(p;) to form the edge
set to obtain the proximity graph, ConDT(S).

9: HANDLENONMANIFOLDS(ConDT(S))

10: HANDLEOUTLIERS(ConDT(S))

Algorithm 2 HandleNonManifolds

Input: Edge set ConDT(S).
Output: Filtered edge set, filtEdges
for each edge {v1,v2} in ConDT(S) do
if degree(v1) < 2 and degree(v2) < 2 then
Push edge {v1,v2} to filtEdges
for each vertex v in ConDT(S) do
if degree(v) > 3 then
Push v to NonManifoldVertices
for each vertex v in NonManifold Vertices do
Find the shortest edge e; from v
Find the edge ez that gets the highest score based on
angle and edge length criteria.
Push e; and es to filtEdges
: return filtEdges

HOY XD Tk W

— =

—
W

4.1 Adaptive computation of uniformity parameter u

Selecting u based on local sampling density or edge
length distributions allows the method to better accom-
modate variations in point spacing and curve structure.
In this section, we outline a strategy that uses local
neighbourhood information to compute the uniformity
parameter dynamically.

This strategy adapts u based on the local distribu-
tion of edge lengths in the 1-ring neighborhood of each
point, ensuring that edge comparisons remain propor-

(a) (b)

Fig. 3: (a) ConDT graph of a sparsely sampled input
point set containing non-manifold vertices (some are
shown in zoomed inset) (b) After removal of undesired
edges using Algorithm 2

tional to the local scale. The adaptive computation is
performed as follows.

For each point p;, we compute the set of edges in its
1-ring neighborhood, EN(p;), and calculate the mean
edge length:

¢; = mean ({||e]| : e € EN(p;)})

The local threshold u; is then computed as:

¢
U; = "
" min(fleq ], le2])

where e; and ey are the two shortest edges emanating
from p;. The edges are retained if:

)

‘a €2

max(||e1 ], |le2]]) < w; - min(]ley

This strategy tunes the the parameter u to adapt
based on the local sampling density.

4.2 Handling Non-Manifold vertices

ConDT graph may end up with more than two edges
from the same vertex as shown in Fig. 3 a. We refer
to such vertices as non-manifold vertices. If we are re-
constructing simple closed manifold curves, no vertex
should have more than two edges attached to it. Non-
manifold handling involves the identification of non-
manifold vertices and retaining only the two most suit-
able edges. This is performed as a post-processing step
and is detailed in Algorithm 2. Here we iterate through
all non-manifold vertices and select at most two of them
based on certain criteria.

We always choose the first shortest edge as it is guar-
anteed to be present in the result following the € - sam-
pling criteria in [7]. The second edge is chosen carefully
based on a scoring mechanism. The edge selection score
is given by
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ConDT: A 2D curve reconstruction algorithm based on a constrained-neighbor proximity graph 5

(a) (b)

Fig. 4: (a) ConDT graph of input point set with outliers
(b) Removal of outlier edges using IQR criteria

score = max
ecE
0.> 2%

% « Lmin
T L.
where:

— % is the normalized angle at the vertex where edge

e is incident.

— L, is the length of edge e.

— Luin is the shortest edge length among all candidate
edges.

This score-based edge selection ensures the choice
of an edge that forms a sufficiently large angle while
favouring shorter edges for geometric consistency. The
selection process enforces a minimum angle criterion of
0. > %’T to avoid choosing edges that are too sharp.
We compute this score only for non-manifold vertices
present in ConDT, unlike in NNCRUST [7] and HNNCRUST
[21] where angle computation is done for every vertex.
Fig. 3 illustrates how score-based selection helps in re-
taining only the suitable edges in the final output.

4.3 Handling Outliers

Algorithm 3 HandleOutliers

1: Let sqglengths be sorted list of squared edge lengths of
ConDT(S).
: Q1 = sqlengths[n/4].
Q3 = sqlengths[3n/4].
IQR = Q3 — Q1.
IQR:, = Q3+ 1.7 x IQR.
for each vertex v; € ConDT(S) do
if both outgoing edge lengths from v; > 2.1QR:j
then
8: OUTLIERFOUND = true
9: Break
10: if OUTLIERFOUND then
11: Retain edges with squared lengths below the TQR;},.

Our proximity graph provides a good embedding
of most of the retainable edges (part of the original
curve) with some additional edges connected to the out-
lier points. Figure 4 (a) shows the ConDT graph of a
point set containing outlier points.

The Interquartile Range (IQR) [14] method is used
to filter out edges with unusually large lengths from the
ConDT graph. The IQR threshold is computed from
the sorted edge list. Edges with squared lengths below
the computed IQR threshold are retained, effectively
preserving edges that conform closely to the original
shape, resulting in a better reconstruction as shown in
Fig. 4b

This outlier removal is detailed in Algorithm 3. Test-
ing various parameter values in the range [1.0,3.0], we
observed optimal results within the interval [1.7,2.5],
therefore we adopted 1.7 as the parameter value(refer to
line 5 of Algorithm 3). Outlier points, generated using
the benchmark implementation, include some placed
very close to the curve, leading to a few undesired edges
(see the regions enclosed in blue circle in Fig. 4b).

5 Results, Comparison & Discussion

We have tested and compared our method CoNDT
against 15 state-of-the-art curve reconstruction algo-
rithms available in the benchmark implementation of
“2D points curve reconstruction survey and benchmark-
ing” [24] namely FITCONNECT [2(], STRETCHDENOISE
[25], CCRUST [8], PEEL [27], CRAWL [28], OPTIMAL-
TRANSPORT [13], CONNECT2D [22], HNNCRUST [21],
LENZ [16], CRUST [l], NNCRUST [7], GATHANL [9],
GATHANG [6], DISCUR [32], VICUR [3] and also with
the latest work SIGCONNECT [17]. For this we incor-
porated SIGCONNECT into the existing 2D Benchmark.
OPTIMALTRANSPORT is omitted in some quantitative
and qualitative evaluations, since it works only with in-
put point sets with high level of noise and outliers and
is unable to reconstruct clean point sets. We conducted
a qualitative analysis by visually comparing the recon-
structed curves, each exhibiting unique characteristics.
For quantitative evaluation, we utilized metrics includ-
ing exact reconstruction, RMS error, and runtime. The
implementation is done using CGAL 5.6 [30] where par-
allel processing is enabled using Intel TBB (Threading
Building Blocks) and tested on a system equipped with
an Intel Core i7-12700 processor.

Table 1 shows the input and output capabilities of
different algorithms along with their manifold guar-
antees, time complexity and capability of running on
dense point set.

The results of ConDT on 3 different instances of
simple closed curves, open curves, multiple curves, in-
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6 J. Antony et al.

Table 1: Comparison on input and output capabilities, time complexity, running times of various reconstruction
algorithms. Under Input column notations used are NU: non uniform, NO: noisy, OU: outlier. The notations used
under output column are O: open, MU: multiple components, S: sharp corners, SI: self intersections/non-manifold,
G: guarantee. T: time complexity, Exactness: exact reconstruction

Algorithm p Input Output - Dense Point Set
NU[Nofou oMUl s |si]a Exactness | Run-time(ms)
FITCONNECT 0O yes yes yes yes yes yes no yes nk? yes 3503
STRETCHDENOISE 0 yes yes yes yes yes yes no yes nk? — Failed —
CCRUST 0 yes mno yes yes yes mno no yes nlogn yes 192
PEEL 2 yes yes yes yes yes no yes yes n? yes 749
CRAWL 0 yes mno yes yes yes mno no no nlogn yes 34
OPTIMALTRANSPORT 0 yes yes yes yes yes no yes yes nlogn no 222
CONNECT2D 0 yes yes no no no yes mno yes nlogn no 653
HNNCRUST 0 yes no no yes yes no no yes nlogn yes 11
LENZ 2 yes no no yes mno yes no yes nlogn — Failed —
CRUST 0 yes no no no yes mno no yes nlogn yes 10
NNCRUST 0 yes no no yes yes no no yes nlogn no 4
GATHAN1 1 yes no no yes yes yes no no nlogn yes 7
GATHANG 1 yes no no yes yes yes no yes nlogn yes 78
DISCUR 0 yes no no yes yes yes mno yes nlogn — Failed —
VICUR 4  yes no no yes yes yes mno no nlogn — Failed —
SIGCONNECT 0 yes mno no no no yes mno yes nlogn no 44
CoNDT(Our’s) 1 yes no yes yes yes yes yes yes nlogn yes 6

XA
o0
At

(a) (b) (c) (d) (e) ®

Fig. 5: Results obtained by ConDT on curves with different characteristics like (a) simple closed (b) open (c)
multiple components (d) input with outliers (e) self intersections and (f) sharp corners.
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put with outliers, curves with self-intersections, and
curves with sharp corners are illustrated in Fig. 5

Manifold curve reconstruction
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Fig. 6: RMS error of manifold curve reconstruction

Algorithm Runtime
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Algorithm

Fig. 7: Average runtime of manifold curves

Manifold curves: We selected a subset of 1,257
noise-free point sets representing manifold curves from
the original benchmark dataset for comparison. This
subset is chosen in such way that the ones with all in-
put points are interpolated in the ground truth is only
included. Plots comparing RMS error is shown in Fig.6.
It can be noted that SIGCONNECT and CONNECT2D,
which are optimized for manifold curve reconstruction,
exhibited the minimum RMS error. However, they are
not capable of reconstructing curves with other input
and output features as indicated in table 1.

The plots in Fig. 6 show that CONDT is comparable
to SIGCONNECT and CONNECT2D in terms of RMS er-
ror. The runtime plot in Fig. 7 illustrates that CoNDT
is on par with superior performers.

Well sampled Manifold curves: Sampling is ap-
plied on a few simple closed curves - bunny shape from
benchmark and blob and simple shapes from [23] to

Fig. 8: Reconstruction of simple closed curves by
ConDT with e-sampling at e=0.2 and 0.3

T 0.2 mmmmm 0.3 mmmm 0.4 0.5 0.6 0.7 m—
o

'g’ LFS-varying sampling density

I e e e e e e

8 0.09F 4
2 008 4
5 0.07 4
f=4

5 006 4
8 005 1
S 004 4
g oo03f J
s omf iy L]
£ 001 f J
s 0ol alalala il al il ol il il AL
£ d & & e & Q> & & &N 4 & L

= & é\,e & (’ \\\o‘ @q\ Qze & é\;o é\{a & ‘@o@ FES

) & & & & ELS S ey

= & & -\,(’0 v\\b < Q’o Q/b ®

4 & N &

:,,'&@
Algorithm

Fig. 9: RMS error of reconstruction for varying e-
sampling.

generate noise free point sets which follow the e sam-
pling criteria of ¢ = 0.2,0.3,0.4,0.5,0.6, and 0.7. Re-
construction of 3 simple closed curves by ConDT with
e-sampling at e=0.2 and 0.3 is shown in Fig. 8. RMS er-
ror for reconstruction for varying e sampling is shown in
Fig. 9. CoNDT is clearly superior against 7 algorithms
and on par with other algorithms.

Densely sampled manifold curves:

Densely sampled point sets of over 10,000 points are
obtained by sampling from the border samples available
in the benchmark for testing.

The run-time and reconstruction exactness[241] of
various algorithms are presented in Table 1. Despite
the high sampling density, algorithms such as SIGCON-
NECT, CONNECT2D, NNCRUST, OPTIMALTRANSPORT,
GATHAN and GATHANG failed to produce accurate re-
construction. Furthermore, algorithms like STRETCH-
DENOISE, LENZ, DISCUR, and VICUR were unable to
generate the output. In contrast, our algorithm (a ba-
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connect2D sigconnect

nncrust

Fig. 10: Reconstruction on a densely sampled point set consisting of 10,518 points, our algorithm CoNDT produced
the exact reconstruction whilst algorithms like SIGCONNECT, GATHAN, GATHANG, NNCRUST generated incorrect
results. (see the regions inside red ellipses) The Inset region for GATHAN shows break/incorrect connections.

Reconstruction of sharp corners

100 —T —T —T T —T —T T T T

Percentage of exactly reconstructed curves

Algorithm

Fig. 11: Reconstruction of curves with sharp corners

sic version without non-manifold and outlier handling)
successfully generated the correct output with a min-
imum runtime of 6ms. A qualitative comparison on a
border sample representing the camel shape is shown
in Fig. 10.

Sharp corners: We used 47 input point sets featur-
ing sharp corners provided in the benchmark for com-
parison. The best results are obtained by GATHANG [0]
and GATHAN [9] followed by CONNECT2D [22] and SIG-
CONNECT [17] (an improved version of CONNECT2D)
which are specifically targeted at handling point sets
with sparse sampling and sharp corners. Fig 11 presents
the exactness plot, highlighting that while our algo-
rithm is not specifically designed for sharp corners, it
still achieved competitive performance, surpassing all
the remaining algorithms.

Non-manifold/Self intersecting curves: Non-
manifold /self-intersecting curves can be handled by
our method (see Fig.le). Fig. 12 presents the RMS
error plot comparing different algorithms, demonstrat-
ing that CONDT performs competitively with the top-
performing methods.

Open and multiple curves: Our method is capa-
ble of handling open and multiple curves with sufficient
sampling (see Fig.1b and Fig.1c). The reconstruction

Non-manifold curve reconstruction
01 T T T T T T T T T T T T T T T

0.08 B

0.06 B

0.04 - B

0.02 b

RMS Error in terms of bounding box diagona

Algorithm

Fig. 12: Reconstruction of non-manifold/self-intersecting

curves

for open curves can be fine-tuned by varying the lo-
cal uniformity parameter u for each shape. Overall re-
construction exactness using a single parameter for all
shapes is difficult to achieve. Here we used a common
local uniformity parameter value, u = 2.75. However,
we can evaluate the performance of different algorithms
using a symmetric difference of area between the result
obtained to the correct output[17]. This will help in
validating that the reconstructed shapes closely resem-
ble the expected output. The symmetric difference area
(computed using BOOST’s boost_sym_diff ) between the
output of different algorithms and the correct output is
shown as a plot in Fig.13. It can be noted that the
symmetric difference measure of ConDT is very low,
second only to crust, which has the smallest value for
open curves. RMS error comparison of different algo-
rithms on multiple curves is shown in Fig. 14, it can be
noted that the result is competitive with that of other
algorithms.

We have also evaluated the performance of our method

using an adaptively computed uniformity parameter, as
described in Section 4.1. The comparative results using
different algorithms with the adaptive uniformity pa-
rameter are provided in Section 2 of the Supplementary.
The results are comparable to those obtained using a
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Fig. 13: Reconstruction of open-curves
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Fig. 14: RMS Error of reconstruction of multiple-curves

optimaltransport ccrust

connect2d

nncrust

sigconnect

Fig. 15: Results of different curve reconstruction algorithms for input point set with 10% outliers. Input point set
and ground truth is shown enclosed in black rectangle. ConDT result is enclosed in brown rectangle. Many long
edges connected to outlier points are found in the output of other benchmark algorithms

carefully tuned u parameter. To fine tune the value u
parameter, a sensitivity analysis is performed, RMS er-
ror is found to be minimum for w in range (2.5, 3.0).
This plot is available in Section 2 of the Supplementary.

Outliers: Using the benchmark code[24], we evalu-
ated our algorithm at different levels of outliers - 5%,
10% and 20% and observed that it outperforms all the
existing methods. Fig. 15 demonstrates the superior
performance of ConDT in reconstructing input point
sets containing outliers. Notably, other reconstruction

algorithms claiming to handle outliers either failed to
remove many long edges (see results of FITCONNECT,
STRETCHDENOISE, CCRUST, PEEL, CRAWL) or strug-
gled to retain the desired edges (see OPTIMALTRANS-
PORT result). Algorithms like CONNECT2D, HNNCRUST,
LENZ, CRUST, NNCRUST, GATHAN]., GATHANG, DISCUR,
VICUR and SIGCONNECT do not have outlier handling
capability, evident from the long undesirable edges in
their reconstruction. Our algorithm has the minimum
RMS error in all cases, as shown in Fig. 16. A value

11

12

13

14

15

16

17

18

19

20



—
en)

J. Antony et al.

5% —10% —0% W
Robustness to outliers

0.10000 T T T T T T T T T T T T T T T T
0.09000
0.08000
0.07000
0.06000
0.05000
0.04000
0.03000
0.02000
0.01000
0.00000

RMS Error in terms of bounding box diagonal

R Algorithm

Fig. 16: RMS Error of reconstructed curves from the
point set with 5%, 10% and 20% outliers added.

0 N 0.003 m—
Algorithm RMS Error

0.01 W 0.03 mwm

RMS Error in terms of bounding box diagonal

& Algorithm

Fig. 17: RMS Error of reconstructed curves from
the point set perturbed with uniform noise of § =
0.003,0.01 and 0.03 as well as the non-noisy input.

6=0 6=0.01

Fig. 18: Reconstructed curves with points perturbed
with uniform noise of 6 = 0 (clean), 0.01 and 0.03.
CoNDT managed to reconstruct the original shape
with 4 = 0.01 but failed to recreate the shape at
& = 0.03 similar to all other state-of-the-art algorithms.

of 1.5 is generally chosen for IQR parameter as per
statistics, but a sensitivity analysis for IQR parame-
ter showed that a value of 1.7 is more appropriate. The
sensitivity analysis plot for the IQR parameter is avail-
able in Section 2 of the Supplementary.

Noise: Robustness against noise is computed using
the RMS error against the ground truth by introduc-
ing uniform noise levels of § = 0.003,0.01 and 0.03 to
the input curves. Here, noise level § corresponds to the
perturbation level with uniform noise as a percentage
of the bounding box diagonal. The results are shown

0.1 mmmmm (0.333 - 0.5

Sampled with Ifs-dependent noise

0.05000 T T T T T T T T T T T T T T T T
0.04500
0.04000
0.03500
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Fig. 19: RMS Error of reconstructed curves of points
sampled with ¢ = 0.3 and the points perturbed with
local feature sized noise of § = 0.1,0.33 and 0.5

ST -
- v

\ \

(a) Correct reconstruction (b) Our reconstruction

(c) Correct reconstruction

Fig. 20: A few failure cases

in Fig. 17. Our method CONDT exhibited the min-
imum RMS error in comparison with other state-of-
the-art algorithms, even though our method is not ex-
plicitly designed for handling noise. Qualitative results
for noise levels of 0 (noise-free), 0.01, and 0.03 for a
curve with multiple components are illustrated in Fig.
18. Notably, CONDT managed to reconstruct the origi-
nal shape with § = 0.01. For § = 0.03, our algorithm, as
well as other state-of-the-art algorithms, failed to recre-
ate the shape correctly. We also tested our method by

(d) Our reconstruction
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stretchdenoise

fitconnect

Input point set

Ground truth hnncrust

© ()

connect2D

gathan

ccrust

nncrust

sigconnect

Fig. 21: Comparison of the results from different curve reconstruction algorithms applied to an input point set
with various input characteristics, including (a) non-uniform sampling (b) presence of outliers (10%) and multiple
output characteristics like (a) simple closed (b) open (c) multiple components or holes, (e) self-intersections. The
input point set and ground truth are shown enclosed inside the blue rectangle. ConDT’s output is shown enclosed
inside a brown square. Regions enclosed in red ellipses indicate incorrect edges, red circles show connection breaks
and red rounded rectangles highlight incorrect self-intersections (for other algorithms).

adding Ifs noise on samples along a cubic Bézier curve
keeping ¢ = 0.3; results for the same are depicted in
Fig. 19, which are better or competitive with other al-
gorithms.

Summary: Unlike other state of the art algorithms,
CoNDT’s uniqueness is that it is capable handling var-
ious input characteristics like (a) non-uniform sampling
(b) presence of outliers, and multiple output character-
istics like (a) simple closed (b) open (c¢) multiple com-
ponents or holes, (e) self-intersections which is desirable
in real use cases. The input point set depicted in Fig.
21. is an example that embeds all the input and output
features listed. It can be noted that the reconstruction
result by CONDT is superior in comparison with other
state-of-the-art algorithms. The reconstructed outputs
of other algorithms exhibit one or more of the following
defects: (a) retained connections to outlier points en-
closed inside red ellipses, (b) incorrect self-intersections
enclosed in red circles, and (c¢) breaks in connections
enclosed within red rounded rectangles.

6 Limitations

Our algorithm is not fine-tuned for handling noise, sharp
corners, and sparse sampling. Although the current non-
manifold and outlier handling approach works well in
practice, it is not guaranteed to be error-free in all cases.
Failure cases for outliers and noisy data are depicted in
Fig. 4 (b) and Fig. 18 respectively. A few other failure
cases are depicted in 20. Here (a) shows the correct re-
construction of a curve with multiple components and
open segments, while (b) shows our reconstruction. (c)
is the correct reconstruction of a simple closed curve,
and (d) shows our result. It can be noted that our re-
sults are affected by sparse sampling, non-manifold pro-
cessing and parameter tuning. Another failure case oc-
curs when two independent curves are sampled in close
proximity. This scenario is illustrated in Section 2, Fig-
ure 6 of the Supplementary material.
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7 Conclusions and Future Work

We proposed a proximity graph-based reconstruction
algorithm called CONDT. The CoNDT proximity graph
can be generated in a single parallelized step. The algo-
rithm relies on a single parameter and is capable of re-
constructing a wide range of characteristic curves. Our
algorithm outperformed the state-of-the-art algorithms
in outlier removal and noise handling in terms of RMS
error. Moreover, it has exhibited superior performance
in reconstructing highly dense point clouds in terms
of exactness and runtime, as well as when multiple in-
put and output features are present. In future work,
CoNDT can be further enhanced to explicitly address
noisy input point sets and locally non-uniform sampling
(e.g., regions with € > 1). Moreover, it can be extended
to 3D for parallel surface reconstruction.
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