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ConDT: A 2D curve reconstruction algorithm based on a
constrained-neighbor proximity graph

J. Antony · M. Reghunath · S. B. Thayyil · R. Muthuganapathy

Abstract We introduce ConDT algorithm, a proximity-1

based reconstruction method relying on Delaunay Tri-2

angulation. The underlying proximity graph is referred3

to as the ConDT graph. In addition to being simple, the4

algorithm could successfully handle various challenging5

cases where classical reconstruction algorithms often6

struggle. Outlier removal is done in the post-processing7

phase using Interquartile Range (IQR) criteria, com-8

puted for the specific instance of the proximity graph.9

Relying on the recent benchmark on 2D reconstruction,10

we show that our method works better or is on par with11

the state-of-the-art methods.12

Keywords Curve reconstruction · Delaunay triangu-13

lation · epsilon sampling · outlier handling14

1 Introduction15

Given a planar point set S ∈ R2 where S = {v1, . . . , vn}16

sampled from an unknown curve Σ, the goal is to ob-17

tain “a piece-wise linear reconstruction of the curve”, C18

from S that best approximates Σ. Curve reconstruction19

has received significant attention in computational ge-20

ometry and computer graphics over the past two decades.21

Various algorithms [24] have been proposed to tackle22

this problem under different assumptions and condi-23

tions.24
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Many of the early curve reconstruction algorithms 25

assume that the input point set is sampled densely from 26

a simple, smooth curve. Some well-known classical algo- 27

rithms in this category include Crust, β-skeleton, NN- 28

Crust, and α-shapes. In general, an input point set may 29

exhibit characteristics such as non-uniform sampling, 30

noise, and outliers. Meanwhile, the resulting curves can 31

feature self-intersections, sharp corners, open ends, or 32

disconnected components. Classical algorithms that pro- 33

vide theoretical guarantees assuming ϵ-sampling, may 34

fail when the input point set contains the characteris- 35

tic(s) mentioned above. 36

To handle these, newer algorithms have often re- 37

sorted to tuning multiple parameters - a challenging 38

task in general. Algorithms that do not use any param- 39

eter or use only a single parameter have difficulties in 40

handling all the mentioned characteristics, as can be 41

seen from Table 1 in [24]. In particular, handling multi- 42

ple components, sharp corners, and outliers is challeng- 43

ing for such algorithms (refer to Table 1 in [24]). 44

Even the recent work [17] focuses only on manifold 45

curves on a clean point set and is unable to handle 46

outliers, open curves, curves with multiple components 47

and non-manifold curves. Self-intersection is a common 48

feature found in many planar curves. However, only a 49

few methods [13,31,27] address its reconstruction. 50

This work, tested on the publicly available bench- 51

mark [24], with the following contributions: 52

– Introduces ConDT graph - a basic proximity graph 53

structure which can be generated in a single-step 54

parallel procedure from DT(S). 55

– Algorithm is demonstrated to handle self-intersections, 56

multiple components, sharp corners (without any 57

parameters), and open curves (with a single param- 58

eter). 59
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– Outliers are handled using a dynamically generated1

IQR parameter specific to the ConDT proximity2

graph.3

2 Related work4

Edelsbrunner proposed a Delaunay triangulation-based5

parametric method to produce α-shape [11], which char-6

acterizes the shape of a point set. Although it was not7

originally designed for curve reconstruction, its 3D ver-8

sion [11] was later shown to be applicable for this pur-9

pose.10

Crust algorithms [1,2] use a combination of De-11

launay triangulation and Voronoi diagram to produce12

closed/open curves. In Crust, a dense sampling based13

on medial axis transform was introduced by Amenta et14

al. [1], which is widely considered as a seminal work15

used to ensure theoretical guarantee of a reconstructed16

curve. Reconstruction using nearest neighbor graph with17

theoretical guarantee is presented in NN-Crust [7]. In18

Power Crust [2], a subset of Voronoi vertices known as19

poles is used to build a power diagram, which divides20

the plane into interior and exterior cells.21

Noise filtering of a given point set and introducing22

new points, followed by pruning and reconstruction us-23

ing NN-Crust, is proposed by Cheng et al. [5]. Mehra24

et al. [18] proposed a visibility operator on the convex25

hull of a noisy point set and used the visibility informa-26

tion to perform both curve and surface reconstructions.27

Feiszli et al. [12] introduced a non-parametric denois-28

ing strategy for reconstructing a curve while preserving29

sharp corners. However, the three curve reconstruction30

algorithms mentioned above do not reconstruct open31

curves, disconnected components, or curves with self-32

intersections, and they are not designed to handle out-33

liers.34

Lee [15] proposed a reconstruction method based35

on the moving least squares concept, specifically de-36

signed for noisy point sets to compute curves without37

self-intersections. Shape Hull [29] removes the edges of38

a Delaunay triangulation based on the position of the39

circumcenter of triangles to construct a simple closed40

divergent curve. Another Delaunay triangulation-based41

method, EC-Shape, uses the empty circle approach for42

outer boundary detection [20] and hole detection [19].43

EC-Shape can reconstruct non-divergent curves but not44

open curves.45

The Water-Distribution-Model (WDM) Crust [29]46

is based on the Voronoi diagram and handles outliers.47

Crawl [28] reconstructs closed/open curves with dis-48

connected components and multiple holes; however, it49

does not handle noisy point sets. The Optimal Trans-50

port Cost method proposed by de Goes et al. [13] is51

a greedy method designed to minimize the increase in 52

transport cost for noisy point sets. Wang et al. [31] pro- 53

posed a quad-tree method with smoothing concepts to 54

reconstruct a curve from a noisy point set with out- 55

liers. Most of the existing methods [10][29][20] are de- 56

signed for simple closed curve reconstruction, whereas 57

only a few of them [27][13][31] reconstruct both open 58

and closed curves. A comprehensive survey and bench- 59

marking of various algorithms for curve reconstruction 60

are discussed by Ohrhallinger et al. [24]. This bench- 61

mark includes about 15 reconstruction algorithms, in- 62

cluding the recent ones. Recently, deep learning ap- 63

proaches have also been explored for curve reconstruc- 64

tion, where networks are trained to predict and fit uni- 65

form B-splines to given point sets[4] 66

While several algorithms address aspects of curve 67

reconstruction, it remains challenging to develop a gen- 68

eralized algorithm that handles all features: closed/open 69

curves, disconnected components, self-intersections, mul- 70

tiple holes, and sharp corners, while also handling noise 71

and outliers. 72

Although some reconstruction algorithms [20] [29][28] 73

detect some of the mentioned features, they are not 74

designed for handling noise. Algorithms specifically de- 75

signed for handling noise [5] [18] [12] do not reconstruct 76

open curves, disconnected components, or curves with 77

self-intersections, and are not designed for handling out- 78

liers. Lee [15] designed a reconstruction algorithm for 79

noisy point sets for both closed and open curves, but 80

it is not capable of detecting self-intersections. F. de 81

Goes et al. [13] and Wang et al. [31] claim to handle 82

noise, self-intersections, and outliers, but their results 83

on clean input point sets are very poor. Additionally, 84

many algorithms have multiple parameters, making it 85

tedious to synchronize and tune them. 86

3 Overview 87

Key concepts with regard to curve reconstruction such 88

as medial axis, local feature size, and ϵ-sampling are 89

well established in the literature and can be found in 90

the seminal work by Amenta et al[1]. A quick review 91

of these concepts can be found in Section 1 of the Sup- 92

plementary. Now we introduce ConDT, the proximity 93

graph employed in our method. 94

3.1 ConDT Proximity Graph 95

A ConDT graph (Constrained Natural Neighborhood 96

Delaunay Triangulation) is a subgraph of a Delaunay 97

Triangulation (DT) of a point set, S. For each point p, 98

let EN(p) denote the set of edges directly connected to 99
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Fig. 1: Visualization of basic ConDT proximity graph construction (a) Input point set of bird and its DT (b)

Shortest edge set say A from the natural neighbourhood of each point shown in red color (c) Second shortest

edge set, say B in green color (d) Combining red and green edges to obtain our proximity graph ConDT which is

(A ∪B)

Fig. 2: Illustration of the proposed reconstruction algorithm on an input point set with multiple components and

open curves in output. (a)Input point set (b) DT of the input point set (c) For an input point, p (in cyan), natural

neighbours (shown in blue) with the selected edges (in green) (d) Illustration for a terminal point of an open curve

(e) DT with reconstructed edges (in green) (f) Reconstructed output

p in the DT, referred as natural neighborhood edges.1

ConDT graph is formed by retaining only the shortest2

and second shortest edges from EN(p) for each point3

p, resulting in a simplified and filtered graph formally4

defined as ConDT(S). This proximity graph produces5

a valid reconstruction when the input point set is well-6

sampled and free of outliers or noise.7

Fig. 1 illustrates the construction of the ConDT8

graph. Fig. 1 (a) shows an input point set representing9

a bird shape adapted from the benchmark with addi-10

tional points to ensure sufficient sampling. The process11

involves selecting the shortest edge shown in red in Fig.12

1 (b) and the second shortest edge shown in green in13

Fig. 1 (c) from the natural neighborhood of each point.14

These selected edges are then combined into a set to15

form the resulting ConDT proximity graph, as depicted16

in Fig. 1 (d). This construction can be done in parallel17

across all the input points.18

4 Method19

The proposed method is outlined in the Algorithm 1.20

We start by constructing the DT of the input point21

set S. Identify the set of edges, EN(p) in the natural22

neighborhood of each point p in the DT. From the set 23

of edges in EN(p), we retain only the first two shortest 24

edges connected to each point to obtain ConDT(S). To 25

take care of open curves (if any), one of the retained 26

edges is to be removed based on a local uniformity pa- 27

rameter u. This parameter ensures the elimination of 28

the longer edge by enforcing an allowable edge length 29

ratio at each vertex. 30

The working of this algorithm is demonstrated with 31

an example in Fig. 2. The input point set is shown in 32

Fig. 2a along with its DT in Fig. 2b. For an input point 33

p (in cyan), natural neighbourhood edges (in blue) and 34

the selected edges (in green) are depicted in Fig. 2c. 35

Illustration for another point is shown in Fig. 2d. in 36

which only one green edge is selected, as the open curve 37

criteria based on u parameter satisfies here. This basic 38

reconstruction step is implemented in parallel for all 39

points. 40

Instead of using a fixed value for u parameter, it 41

can be adaptively computed on the go based on local 42

neighbourhood as discussed in section 4.1 43

If reconstruction is limited to manifold curves, then 44

we can handle non-manifold vertices in a post-processing 45
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step (Line 11). This procedure is illustrated in Algo-1

rithm 2 and discussed in section 4.2.2

Outlier removal is done (Line 12) as a post-processing3

task and is illustrated in section 4.3.4

Algorithm 1 ConDT(S)

Input: A planar point set S ⊆ R2 representing the curve C,
local uniformity parameter u.
Output: Reconstructed polygonal approximation, ∂O of the
curve C.

1: Compute the 2D Delaunay triangulation, DT (S).
2: for each point pi ∈ S in parallel do
3: Collect the set of 1-ring vertices, N (pi), incident to

pi in DT (S).
4: Collect the set of edges EN(pi) connecting pi to each

of the vertices in N (pi).
5: Retain the two shortest edges, e1 and e2, in EN(pi).
6: if max(e1, e2) ≥ u×min(e1, e2) then
7: Retain only the shortest edge, min(e1, e2), in

EN(pi).

8: Combine the retained edges in EN(pi) to form the edge
set to obtain the proximity graph, ConDT(S).

9: HandleNonManifolds(ConDT(S))
10: HandleOutliers(ConDT(S))

Algorithm 2 HandleNonManifolds

1: Input: Edge set ConDT(S).
2: Output: Filtered edge set, filtEdges
3: for each edge {v1, v2} in ConDT(S) do
4: if degree(v1) ≤ 2 and degree(v2) ≤ 2 then
5: Push edge {v1, v2} to filtEdges

6: for each vertex v in ConDT(S) do
7: if degree(v) ≥ 3 then
8: Push v to NonManifoldVertices

9: for each vertex v in NonManifoldVertices do
10: Find the shortest edge e1 from v
11: Find the edge e2 that gets the highest score based on

angle and edge length criteria.
12: Push e1 and e2 to filtEdges

13: return filtEdges

4.1 Adaptive computation of uniformity parameter u5

Selecting u based on local sampling density or edge6

length distributions allows the method to better accom-7

modate variations in point spacing and curve structure.8

In this section, we outline a strategy that uses local9

neighbourhood information to compute the uniformity10

parameter dynamically.11

This strategy adapts u based on the local distribu-12

tion of edge lengths in the 1-ring neighborhood of each13

point, ensuring that edge comparisons remain propor-14

(a) (b)

Fig. 3: (a) ConDT graph of a sparsely sampled input

point set containing non-manifold vertices (some are

shown in zoomed inset) (b) After removal of undesired

edges using Algorithm 2

tional to the local scale. The adaptive computation is 15

performed as follows. 16

For each point pi, we compute the set of edges in its 17

1-ring neighborhood, EN(pi), and calculate the mean 18

edge length: 19

ℓi = mean ({∥e∥ : e ∈ EN(pi)})

The local threshold ui is then computed as: 20

ui =
ℓi

min(∥e1∥, ∥e2∥)

where e1 and e2 are the two shortest edges emanating 21

from pi. The edges are retained if: 22

max(∥e1∥, ∥e2∥) < ui ·min(∥e1∥, ∥e2∥)

23

This strategy tunes the the parameter u to adapt 24

based on the local sampling density. 25

4.2 Handling Non-Manifold vertices 26

ConDT graph may end up with more than two edges 27

from the same vertex as shown in Fig. 3 a. We refer 28

to such vertices as non-manifold vertices. If we are re- 29

constructing simple closed manifold curves, no vertex 30

should have more than two edges attached to it. Non- 31

manifold handling involves the identification of non- 32

manifold vertices and retaining only the two most suit- 33

able edges. This is performed as a post-processing step 34

and is detailed in Algorithm 2. Here we iterate through 35

all non-manifold vertices and select at most two of them 36

based on certain criteria. 37

We always choose the first shortest edge as it is guar- 38

anteed to be present in the result following the ϵ - sam- 39

pling criteria in [7]. The second edge is chosen carefully 40

based on a scoring mechanism. The edge selection score 41

is given by 42
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Fig. 4: (a) ConDT graph of input point set with outliers

(b) Removal of outlier edges using IQR criteria

score = max
e∈E

θe>
2π
3

(
θe
π

× Lmin

Le

)

where:1

– θe
π is the normalized angle at the vertex where edge2

e is incident.3

– Le is the length of edge e.4

– Lmin is the shortest edge length among all candidate5

edges.6

This score-based edge selection ensures the choice7

of an edge that forms a sufficiently large angle while8

favouring shorter edges for geometric consistency. The9

selection process enforces a minimum angle criterion of10

θe > 2π
3 to avoid choosing edges that are too sharp.11

We compute this score only for non-manifold vertices12

present in ConDT, unlike in nncrust [7] and hnncrust13

[21] where angle computation is done for every vertex.14

Fig. 3 illustrates how score-based selection helps in re-15

taining only the suitable edges in the final output.16

4.3 Handling Outliers17

Algorithm 3 HandleOutliers

1: Let sqlengths be sorted list of squared edge lengths of
ConDT(S).

2: Q1 = sqlengths[n/4].
3: Q3 = sqlengths[3n/4].
4: IQR = Q3−Q1.
5: IQRth = Q3 + 1.7× IQR.
6: for each vertex vi ∈ ConDT(S) do
7: if both outgoing edge lengths from vi > 2.IQRth

then
8: OUTLIERFOUND = true
9: Break
10: if OUTLIERFOUND then
11: Retain edges with squared lengths below the IQRth.

Our proximity graph provides a good embedding 18

of most of the retainable edges (part of the original 19

curve) with some additional edges connected to the out- 20

lier points. Figure 4 (a) shows the ConDT graph of a 21

point set containing outlier points. 22

The Interquartile Range (IQR) [14] method is used 23

to filter out edges with unusually large lengths from the 24

ConDT graph. The IQR threshold is computed from 25

the sorted edge list. Edges with squared lengths below 26

the computed IQR threshold are retained, effectively 27

preserving edges that conform closely to the original 28

shape, resulting in a better reconstruction as shown in 29

Fig. 4b 30

This outlier removal is detailed in Algorithm 3. Test- 31

ing various parameter values in the range [1.0, 3.0], we 32

observed optimal results within the interval [1.7, 2.5], 33

therefore we adopted 1.7 as the parameter value(refer to 34

line 5 of Algorithm 3). Outlier points, generated using 35

the benchmark implementation, include some placed 36

very close to the curve, leading to a few undesired edges 37

(see the regions enclosed in blue circle in Fig. 4b). 38

5 Results, Comparison & Discussion 39

We have tested and compared our method ConDT 40

against 15 state-of-the-art curve reconstruction algo- 41

rithms available in the benchmark implementation of 42

“2D points curve reconstruction survey and benchmark- 43

ing” [24] namely fitconnect [26], stretchdenoise 44

[25], ccrust [8], peel [27], crawl [28], optimal- 45

transport [13], connect2d [22], hnncrust [21], 46

lenz [16], crust [1], nncrust [7], gathan1 [9], 47

gathang [6], discur [32], vicur [3] and also with 48

the latest work sigconnect [17]. For this we incor- 49

porated sigconnect into the existing 2D Benchmark. 50

optimaltransport is omitted in some quantitative 51

and qualitative evaluations, since it works only with in- 52

put point sets with high level of noise and outliers and 53

is unable to reconstruct clean point sets. We conducted 54

a qualitative analysis by visually comparing the recon- 55

structed curves, each exhibiting unique characteristics. 56

For quantitative evaluation, we utilized metrics includ- 57

ing exact reconstruction, RMS error, and runtime. The 58

implementation is done using CGAL 5.6 [30] where par- 59

allel processing is enabled using Intel TBB (Threading 60

Building Blocks) and tested on a system equipped with 61

an Intel Core i7-12700 processor. 62

Table 1 shows the input and output capabilities of 63

different algorithms along with their manifold guar- 64

antees, time complexity and capability of running on 65

dense point set. 66

The results of ConDT on 3 different instances of 67

simple closed curves, open curves, multiple curves, in- 68
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Table 1: Comparison on input and output capabilities, time complexity, running times of various reconstruction

algorithms. Under Input column notations used are NU: non uniform, NO: noisy, OU: outlier. The notations used

under output column are O: open, MU: multiple components, S: sharp corners, SI: self intersections/non-manifold,

G: guarantee. T: time complexity, Exactness: exact reconstruction

Input Output Dense Point Set
Algorithm P

NU NO OU O MU S SI G
T

Exactness Run-time(ms)

FITCONNECT 0 yes yes yes yes yes yes no yes nk2 yes 3503

STRETCHDENOISE 0 yes yes yes yes yes yes no yes nk2 — Failed —

CCRUST 0 yes no yes yes yes no no yes nlogn yes 192

PEEL 2 yes yes yes yes yes no yes yes n2 yes 749

CRAWL 0 yes no yes yes yes no no no nlogn yes 34

OPTIMALTRANSPORT 0 yes yes yes yes yes no yes yes nlogn no 222

CONNECT2D 0 yes yes no no no yes no yes nlogn no 653

HNNCRUST 0 yes no no yes yes no no yes nlogn yes 11

LENZ 2 yes no no yes no yes no yes nlogn — Failed —

CRUST 0 yes no no no yes no no yes nlogn yes 10

NNCRUST 0 yes no no yes yes no no yes nlogn no 4

GATHAN1 1 yes no no yes yes yes no no nlogn yes 7

GATHANG 1 yes no no yes yes yes no yes nlogn yes 78

DISCUR 0 yes no no yes yes yes no yes nlogn — Failed —

VICUR 4 yes no no yes yes yes no no nlogn — Failed —

SIGCONNECT 0 yes no no no no yes no yes nlogn no 44

ConDT(Our’s) 1 yes no yes yes yes yes yes yes nlogn yes 6

Fig. 5: Results obtained by ConDT on curves with different characteristics like (a) simple closed (b) open (c)

multiple components (d) input with outliers (e) self intersections and (f) sharp corners.
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put with outliers, curves with self-intersections, and1

curves with sharp corners are illustrated in Fig. 5.2
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Fig. 6: RMS error of manifold curve reconstruction
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Fig. 7: Average runtime of manifold curves

Manifold curves: We selected a subset of 1,2573

noise-free point sets representing manifold curves from4

the original benchmark dataset for comparison. This5

subset is chosen in such way that the ones with all in-6

put points are interpolated in the ground truth is only7

included. Plots comparing RMS error is shown in Fig.6.8

It can be noted that sigconnect and connect2d,9

which are optimized for manifold curve reconstruction,10

exhibited the minimum RMS error. However, they are11

not capable of reconstructing curves with other input12

and output features as indicated in table 1.13

The plots in Fig. 6 show that ConDT is comparable14

to sigconnect and connect2d in terms of RMS er-15

ror. The runtime plot in Fig. 7 illustrates that ConDT16

is on par with superior performers.17

Well sampled Manifold curves: Sampling is ap-18

plied on a few simple closed curves - bunny shape from19

benchmark and blob and simple shapes from [23] to20

Fig. 8: Reconstruction of simple closed curves by

ConDT with ϵ-sampling at ϵ=0.2 and 0.3
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0.2 0.3 0.4 0.5 0.6 0.7

LFS-varying sampling density

Fig. 9: RMS error of reconstruction for varying ϵ-

sampling.

generate noise free point sets which follow the ϵ sam- 21

pling criteria of ϵ = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. Re- 22

construction of 3 simple closed curves by ConDT with 23

ϵ-sampling at ϵ=0.2 and 0.3 is shown in Fig. 8. RMS er- 24

ror for reconstruction for varying ϵ sampling is shown in 25

Fig. 9. ConDT is clearly superior against 7 algorithms 26

and on par with other algorithms. 27

Densely sampled manifold curves: 28

Densely sampled point sets of over 10,000 points are 29

obtained by sampling from the border samples available 30

in the benchmark for testing. 31

The run-time and reconstruction exactness[24] of 32

various algorithms are presented in Table 1. Despite 33

the high sampling density, algorithms such as sigcon- 34

nect, connect2d, nncrust, optimaltransport, 35

gathan and gathang failed to produce accurate re- 36

construction. Furthermore, algorithms like stretch- 37

denoise, lenz, discur, and vicur were unable to 38

generate the output. In contrast, our algorithm (a ba- 39
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connect2D ConDTsigconnect gathang nncrustgathan

Fig. 10: Reconstruction on a densely sampled point set consisting of 10,518 points, our algorithm ConDT produced

the exact reconstruction whilst algorithms like sigconnect, gathan, gathang, nncrust generated incorrect

results. (see the regions inside red ellipses) The Inset region for gathan shows break/incorrect connections.
.
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Fig. 11: Reconstruction of curves with sharp corners
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Non-manifold curve reconstruction

Fig. 12: Reconstruction of non-manifold/self-intersecting

curves

sic version without non-manifold and outlier handling)1

successfully generated the correct output with a min-2

imum runtime of 6ms. A qualitative comparison on a3

border sample representing the camel shape is shown4

in Fig. 10.5

Sharp corners:We used 47 input point sets featur-6

ing sharp corners provided in the benchmark for com-7

parison. The best results are obtained by gathang [6]8

and gathan [9] followed by Connect2d [22] and sig-9

connect [17] (an improved version of connect2d)10

which are specifically targeted at handling point sets11

with sparse sampling and sharp corners. Fig 11 presents12

the exactness plot, highlighting that while our algo-13

rithm is not specifically designed for sharp corners, it14

still achieved competitive performance, surpassing all15

the remaining algorithms.16

Non-manifold/Self intersecting curves: Non-17

manifold /self-intersecting curves can be handled by18

our method (see Fig.1e). Fig. 12 presents the RMS19

error plot comparing different algorithms, demonstrat-20

ing that ConDT performs competitively with the top-21

performing methods.22

Open and multiple curves: Our method is capa-23

ble of handling open and multiple curves with sufficient24

sampling (see Fig.1b and Fig.1c). The reconstruction25

for open curves can be fine-tuned by varying the lo- 26

cal uniformity parameter u for each shape. Overall re- 27

construction exactness using a single parameter for all 28

shapes is difficult to achieve. Here we used a common 29

local uniformity parameter value, u = 2.75. However, 30

we can evaluate the performance of different algorithms 31

using a symmetric difference of area between the result 32

obtained to the correct output[17]. This will help in 33

validating that the reconstructed shapes closely resem- 34

ble the expected output. The symmetric difference area 35

(computed using BOOST’s boost sym diff ) between the 36

output of different algorithms and the correct output is 37

shown as a plot in Fig.13. It can be noted that the 38

symmetric difference measure of ConDT is very low, 39

second only to crust, which has the smallest value for 40

open curves. RMS error comparison of different algo- 41

rithms on multiple curves is shown in Fig. 14, it can be 42

noted that the result is competitive with that of other 43

algorithms. 44

We have also evaluated the performance of our method 45

using an adaptively computed uniformity parameter, as 46

described in Section 4.1. The comparative results using 47

different algorithms with the adaptive uniformity pa- 48

rameter are provided in Section 2 of the Supplementary. 49

The results are comparable to those obtained using a 50
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Fig. 13: Reconstruction of open-curves
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Multiple curve reconstruction

Fig. 14: RMS Error of reconstruction of multiple-curves

Fig. 15: Results of different curve reconstruction algorithms for input point set with 10% outliers. Input point set

and ground truth is shown enclosed in black rectangle. ConDT result is enclosed in brown rectangle. Many long

edges connected to outlier points are found in the output of other benchmark algorithms

carefully tuned u parameter. To fine tune the value u1

parameter, a sensitivity analysis is performed, RMS er-2

ror is found to be minimum for u in range (2.5, 3.0).3

This plot is available in Section 2 of the Supplementary.4

Outliers: Using the benchmark code[24], we evalu-5

ated our algorithm at different levels of outliers - 5%,6

10% and 20% and observed that it outperforms all the7

existing methods. Fig. 15 demonstrates the superior8

performance of ConDT in reconstructing input point9

sets containing outliers. Notably, other reconstruction10

algorithms claiming to handle outliers either failed to 11

remove many long edges (see results of fitConnect, 12

stretchDenoise, ccrust, peel, crawl) or strug- 13

gled to retain the desired edges (see optimaltrans- 14

port result). Algorithms like connect2d, hnncrust, 15

lenz, crust, nncrust, gathan1, gathang, discur, 16

vicur and sigconnect do not have outlier handling 17

capability, evident from the long undesirable edges in 18

their reconstruction. Our algorithm has the minimum 19

RMS error in all cases, as shown in Fig. 16. A value 20
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Fig. 16: RMS Error of reconstructed curves from the

point set with 5%, 10% and 20% outliers added.

Fig. 17: RMS Error of reconstructed curves from

the point set perturbed with uniform noise of δ =

0.003, 0.01 and 0.03 as well as the non-noisy input.

Fig. 18: Reconstructed curves with points perturbed

with uniform noise of δ = 0 (clean), 0.01 and 0.03.

ConDT managed to reconstruct the original shape

with δ = 0.01 but failed to recreate the shape at

δ = 0.03 similar to all other state-of-the-art algorithms.

of 1.5 is generally chosen for IQR parameter as per1

statistics, but a sensitivity analysis for IQR parame-2

ter showed that a value of 1.7 is more appropriate. The3

sensitivity analysis plot for the IQR parameter is avail-4

able in Section 2 of the Supplementary.5

Noise: Robustness against noise is computed using6

the RMS error against the ground truth by introduc-7

ing uniform noise levels of δ = 0.003, 0.01 and 0.03 to8

the input curves. Here, noise level δ corresponds to the9

perturbation level with uniform noise as a percentage10

of the bounding box diagonal. The results are shown11

Fig. 19: RMS Error of reconstructed curves of points

sampled with ϵ = 0.3 and the points perturbed with

local feature sized noise of δ = 0.1, 0.33 and 0.5

(a) Correct reconstruction

(c) Correct reconstruction

(b) Our reconstruction

(d) Our reconstruction

Fig. 20: A few failure cases

in Fig. 17. Our method ConDT exhibited the min- 12

imum RMS error in comparison with other state-of- 13

the-art algorithms, even though our method is not ex- 14

plicitly designed for handling noise. Qualitative results 15

for noise levels of 0 (noise-free), 0.01, and 0.03 for a 16

curve with multiple components are illustrated in Fig. 17

18. Notably, ConDT managed to reconstruct the origi- 18

nal shape with δ = 0.01. For δ = 0.03, our algorithm, as 19

well as other state-of-the-art algorithms, failed to recre- 20

ate the shape correctly. We also tested our method by 21
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Input point set ccrust

discurgathan

connect2D

crawlfitconnect

crust

ConDT

Ground truth

gathang

hnncrust lenz nncrust

peel

sigconnect

stretchdenoise

vicur

Fig. 21: Comparison of the results from different curve reconstruction algorithms applied to an input point set

with various input characteristics, including (a) non-uniform sampling (b) presence of outliers (10%) and multiple

output characteristics like (a) simple closed (b) open (c) multiple components or holes, (e) self-intersections. The

input point set and ground truth are shown enclosed inside the blue rectangle. ConDT’s output is shown enclosed

inside a brown square. Regions enclosed in red ellipses indicate incorrect edges, red circles show connection breaks

and red rounded rectangles highlight incorrect self-intersections (for other algorithms).

adding lfs noise on samples along a cubic Bézier curve1

keeping ϵ = 0.3; results for the same are depicted in2

Fig. 19, which are better or competitive with other al-3

gorithms.4

Summary: Unlike other state of the art algorithms,5

ConDT’s uniqueness is that it is capable handling var-6

ious input characteristics like (a) non-uniform sampling7

(b) presence of outliers, and multiple output character-8

istics like (a) simple closed (b) open (c) multiple com-9

ponents or holes, (e) self-intersections which is desirable10

in real use cases. The input point set depicted in Fig.11

21. is an example that embeds all the input and output12

features listed. It can be noted that the reconstruction13

result by ConDT is superior in comparison with other14

state-of-the-art algorithms. The reconstructed outputs15

of other algorithms exhibit one or more of the following16

defects: (a) retained connections to outlier points en-17

closed inside red ellipses, (b) incorrect self-intersections18

enclosed in red circles, and (c) breaks in connections19

enclosed within red rounded rectangles.20

6 Limitations 21

Our algorithm is not fine-tuned for handling noise, sharp 22

corners, and sparse sampling. Although the current non- 23

manifold and outlier handling approach works well in 24

practice, it is not guaranteed to be error-free in all cases. 25

Failure cases for outliers and noisy data are depicted in 26

Fig. 4 (b) and Fig. 18 respectively. A few other failure 27

cases are depicted in 20. Here (a) shows the correct re- 28

construction of a curve with multiple components and 29

open segments, while (b) shows our reconstruction. (c) 30

is the correct reconstruction of a simple closed curve, 31

and (d) shows our result. It can be noted that our re- 32

sults are affected by sparse sampling, non-manifold pro- 33

cessing and parameter tuning. Another failure case oc- 34

curs when two independent curves are sampled in close 35

proximity. This scenario is illustrated in Section 2, Fig- 36

ure 6 of the Supplementary material. 37
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7 Conclusions and Future Work1

We proposed a proximity graph-based reconstruction2

algorithm calledConDT. TheConDT proximity graph3

can be generated in a single parallelized step. The algo-4

rithm relies on a single parameter and is capable of re-5

constructing a wide range of characteristic curves. Our6

algorithm outperformed the state-of-the-art algorithms7

in outlier removal and noise handling in terms of RMS8

error. Moreover, it has exhibited superior performance9

in reconstructing highly dense point clouds in terms10

of exactness and runtime, as well as when multiple in-11

put and output features are present. In future work,12

ConDT can be further enhanced to explicitly address13

noisy input point sets and locally non-uniform sampling14

(e.g., regions with ϵ > 1). Moreover, it can be extended15

to 3D for parallel surface reconstruction.16
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