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Abstract
We present a deep learning framework for directly extracting a

pruned skeleton from a noisy 2D shape. A key component of our

work is a carefully constructed synthetic dataset of diverse shapes

with human-in-the-loop validation of pruned skeletons, addressing

the lack of suitable training data for this task. Inspired by recent in-

sights into the design differences between convolutional and trans-

former architectures, we propose a convolution-based minimalist

architecture built on a few large kernels emphasizing simplicity and

elegance in design, particularly for resource and data constrained

environments.

We introduce a novel loss function that penalizes spurious branches

without removing essential structures. Our convolution-only model

achieves higher F1 scores than existing small-kernel convolution

and transformer-based approaches. This work highlights the im-

portance of carefully crafted datasets and minimalist architectures

for downstream applications like pruning skeletons.

CCS Concepts
• Computing methodologies→ Neural networks.
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1 Introduction
A medial axis (referred to as skeleton) of a shape is the locus of

centres of maximally inscribed discs [Blum 1967]. It serves as a com-

pact shape representation that preserves the essential geometry

and topology of the underlying shape. A major limitation of skele-

tonization is its sensitivity to small perturbation on the boundary

or noise, which leads to the appearance of many spurious branches.

Figure 1(a) shows a perturbed boundary whose skeleton has many

spurious branches (Figure 1(b)). To remove spurious branches, al-

gorithmic approaches [Rong and Ju 2023] typically require manual

tuning, which is an arduous task across different shapes and vary-

ing noise levels to achieve the desired output. Figure 1(c) shows the

color-coded significance measure [Rong and Ju 2023], and the skele-

ton is then pruned using a threshold of 50
◦
(Figure 1(d)), determined

through empirical tuning. Generating a perceptually satisfactory

skeleton automatically, without any manual intervention, is more

desirable. For instance, automatic pruning in [Yang et al. 2020]

achieves this but requires substantial computational time. Hence,

in this paper, a learning-based approach is proposed for obtaining

a pruned skeleton (Figure 1(e)) directly from a perturbed boundary

(Figure 1(a)).

Figure 1: From a noisy shape to pruned skeleton: (a) a noisy
shape. (b) medial axis exhibiting many spurious branches.
(c), (d) color-coded branches after computing significance
measure [Rong and Ju 2023] and pruned skeleton using 50

◦

threshold (e) ours: directly obtained the pruned skeleton for
the noisy input.

Recent advances in deep learning have enabled data-driven ap-

proaches for skeletonization [Panichev and Voloshyna 2019; Xu

et al. 2019], mapping each pixel in the input shape to a binary skele-

ton representation. Their performance is heavily dependent on the

availability of high-quality datasets. To the best of our knowledge,

there are no existing datasets for producing pruned skeletons and

hence such approaches are restricted to generating unpruned ones.
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Figure 2: Shape-Skeleton generation pipeline.

Recent advancements such as ConvNeXt [Liu et al. 2022] and

VanillaNet [Chen et al. 2023] highlight how modern design choices

such as scaling kernel sizes, architectural minimalism, and effective

receptive field (ERF) optimization, enable convolutions to achieve

competitive or even superior performance compared to transform-

ers in several downstream tasks. These insights motivated us to

explore a convolution based strategy for skeleton pruning, that

leverages the inherent strengths of convolutional architectures,

such as inductive biases, data efficiency, and hierarchical feature

reasoning. Our objective is to design models capable of generat-

ing perceptually clean and structurally meaningful skeletons even

under boundary perturbations, using a newly developed dataset.

Our contributions are threefold. (1) We construct a synthetic

dataset of 2,928 diverse shapes with pruned skeletons, through a

human-in-the-loop process. (2) We design a convolution only ar-

chitecture that employs large kernels within a shallow, minimalist

framework, well suited for resource limited settings. (3) We propose

a novel loss that suppresses spurious branches by enforcing con-

sistency between the predicted and ground truth neighborhoods,

thereby promoting better topological connectivity.

2 Methodology
2.1 Dataset Creation and curation
We synthesize a medial–axis dataset with a human-in-the-loop

workflow. Base shapes (1,000) are generated as in Algorithm 1:

sample points on a unit circle, connect to a polygon, fit a periodic

spline to obtain a smooth closed contour, rasterize to an image,

and compute its medial axis with scikit-image (Figure 2). If a

shape or its medial axis exhibits any artifacts, we edit the control

points and regenerate shape and skeleton. This data generation

process enables creation of diverse shapes under human control. To

obtain a pruned dataset (Figure 3), we perturb the boundary only

within a narrow boundary band (Algorithm 2), generating up to

five variants per base by adding a noise field 𝑁𝑇 with amplitude 𝐴

and maximum spatial frequency (in case of sinsoidal noise). Noise

amplitude 𝐴 scales displacements. For each variant, parameters are

drawn from preset ranges (Table 1 in supplementary); for sinusoid

we cap spatial detail by 𝑓max (minimum wavelength 1/𝑓max) to

keep perturbations smooth. This process is done with a human

in the loop who has knowledge about medial axis and geometry

to ensure that modifications do not alter the topology. We then

remove near-identical shapes and unstable cases, yielding compact,

diverse training 2,928 pairs.

2.2 Architecture and Model Design
Design Insight [Ding et al. 2022]:

Controlled
Boundary

pertubations

Gaussia
n

Uniform 

Sinusoidal 

Combination 

Structural
Check

Accepted Ground Truth for Perturbed Shapes

Training Dataset

Shape Dataset

Gaussian

Uniform

Sinusoid

All

Boundary Perturbed ShapesBandwidth region

Figure 3: Dataset for pruned skeleton created by adding con-
trolled boundary variations to base shapes.

ALGORITHM 1: Human-in-the-Loop Generation of Shape–

Skeleton Pairs

Input: Image size 𝑆 × 𝑆 ; control points 𝑁 ; spline samples𝑀

Output: Binary mask Y; skeleton S

1. Seed points. Sample 𝑁 jittered points on a unit circle.

2. Polygon. Connect points to form a closed polygon.

3. Spline. Fit a periodic cubic spline; sample𝑀 points.

4. Rasterize. Scale to 𝑆 × 𝑆 and rasterize to Y.
5. Skeleton. S← MedialAxis(Y) .
6. Human editing. Display the mask and skeleton; edit control
points to generate shape variants; repeat as needed.

7. Save. Store Y and S.

ALGORITHM 2: Boundary-Noise Augmentation with Reference

Consistency Check

Input: Ref. mask𝑀
ref
, skeleton 𝑆

ref
, noise

𝑇 ∈ {Gaussian,Uniform, Sine,Combination}, band 𝑤

Output: Accepted variants 𝑀̂ paired with 𝑆
ref

1. Band. Compute boundary 𝐵 = 𝜕𝑀
ref
; form a 𝑤-wide band 𝑅.

2. Noise. Choose amplitude 𝐴 and max freq. 𝑓max; sample field 𝑁𝑇

on 𝐵.

3. Perturb. Displace 𝑝 ∈ 𝐵 along its normal by 𝑁𝑇 (𝑝 ) , clipped to

[−𝑤, 𝑤 ]; rasterize to 𝑀̂ .

4. Consistency. Visual check: accept iff change is small and salient

features are preserved; else retune 𝐴, 𝑓max or discard.

5. Save. Store (𝑀̂, 𝑆
ref
) .

Figure 4: ConvPSNet Model architecture overview. 𝐸1–𝐸3 and
𝐸′
1
–𝐸′

3
denote parallel branches with kernel sizes up to 7×7.

(SC indicates structural conditioning.)

• ERF scaling & implication: By ERF theory, ERF ∈ O(𝐾
√
𝐿);

it grows linearly with kernel size 𝐾 and only sub-linearly with

depth 𝐿.
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• Design choice & optimization: Prefer few large kernels over
deep stacks of 3×3; shallow large-kernel models expand ERF

efficiently and are easier to train.

• Shape bias: Large kernels models are more similar to human

shape bias.

Overall Design: Our network, ConvPSNet, employs larger ker-

nels (up to 7 × 7) in parallel branches inspired by [Liu et al. 2022].

Multi-Branch Feature Extraction: The input is processed by three

parallel branches, each operating with a different kernel size: a

3 × 3 branch for fine local details, a 5 × 5 branch for mid-range

context, and a 7 × 7 branch for long-range structural continuity.

The outputs of these branches are bilinearly aligned, concatenated,

and compressed with a 1× 1 convolution to form a fused structural

prior 𝐹 .

Structural Conditioning: During decoding, the fused prior 𝐹 is

injected at each stage (denoted as SC in Figure. 4) through a 1 × 1
projection followed by addition to the upsampled features. SC acts

as a global bias reinforcing topological connectivity.

Final Prediction: The output of the decoder is passed through

a final 1 × 1 convolution and a sigmoid activation to produce the

skeleton likelihood map:

2.3 Loss Formulation
The total loss consists of : a standard binary cross-entropy loss,

focal loss to handle class imbalance and the novel spurious endpoint

penalty.

Spurious branch loss (neighborhoodMAE).. Let𝑌 ∈ [0, 1]𝐻×𝑊
be the predicted skeleton map and 𝑌 ∈ {0, 1}𝐻×𝑊 the ground truth.

For each pixel𝑢, consider the 𝑘×𝑘 windowN𝑘 (𝑢) centered at𝑢 (we

use 𝑘=3) and define the local skeleton occupancy

𝑚
𝑌
(𝑢) = 1

𝑘2 − 1
∑︁

𝑣∈N𝑘 (𝑢 )\{𝑢}
𝑌 (𝑣), 𝑚𝑌 (𝑢) =

1

𝑘2 − 1
∑︁

𝑣∈N𝑘 (𝑢 )\{𝑢}
𝑌 (𝑣) .

The loss is the mean absolute error between these occupancies over

pixels with a full window (V ignores a ⌊𝑘/2⌋-pixel border):

Lspur =
1

|V|
∑︁
𝑢∈V

��𝑚
𝑌
(𝑢) −𝑚𝑌 (𝑢)

��. (1)

This encourages the predicted local neighborhood to match the

ground truth neighborhood:

The final training loss for our model is a weighted sum of all

components:

L
total

= 𝜆BCE · LBCE + 𝜆Focal · LFocal
+ 𝜆spur · Lspur (2)

(Ablation on loss in supplementary)

3 Experimental setup
All experimentswere conducted on amachine equippedwithNVIDIA

GeForce RTX 4070 Ti GPU using PyTorch 2.1.0 with CUDA 12.1.

Table 1: Network performance with F1 score.

Model Params (M) Size (MB) Time (ms) F1

ConvPSNet (ours) 11.38 43.41 7.73 0.798

U-Net 31.04 118.46 4.84 0.775

ViT 22.26 84.93 7.20 0.765

ConvNeXt 34.10 130.10 7.61 0.744

ResNet-50 68.20 260.39 8.69 0.710

3.1 Training
Our skeleton prediction model was trained on a dataset of 2,928

samples, split into training, validation, and test sets with a 70–20–10

ratio. All inputs were resized to a resolution of 224× 224 pixels. We

used the AdamW optimizer with an initial learning rate of 0.001,

scheduled via cosine annealing. Training was performed for 50

epochs with a batch size of 8.

3.2 Evaluation protocol
Weevaluate the accuracy of skeleton prediction using the F1-measure

between the prediction and the ground truth , computed with 1

pixel localization tolerance. We also performed qualitative analysis.

4 Results and discussion
Qualitative comparison: Our test set contains complex real-world

shapes with noise, thin parts, high curvature, and weak structural

cues. At inference, the network outputs a likelihood map 𝑝 (𝑥); we
extract skeletons by binarization of the skeleton map. (Figure 5).

We compare against ViT, ConvNeXt, U-Net, ResNet-50, and the

scikit-image medial axis. All models are trained on the same

dataset until convergence. ConvPSNet consistently produces cen-

tered, connected centerlines and stable junctions with few spurious

branches. ViT offers strong global context but overfits under limited
data, leading to unstable generalization. ConvNeXt uses large ker-
nels yet often yields slightly overshot/offset centerlines, likely due

to limited data. U-Net localizes well on our small dataset but fre-

quently shows breaks in thin or high-curvature regions. ResNet-50
exhibits similar breakages. Themedial axis baseline is brittle to
boundary noise and produces extra branches.

The noise resistance of our model is compared with the varia-

tional pruning approach [Rong and Ju 2023] as shown in Figure 6.

Their approach is compute intensive and also requires computation

of medial axis geometrically and the object angle.

Quantitative comparison. As shown in Table 1, ConvPSNet at-

tains the best F1 while remaining lightweight ( 11 M params, 43

MB). Its inference time is slightly slower than U-Net but comparable

to ViT/ConvNeXt and faster than ResNet-50.

5 Conclusion
We have presented a deep learning architecture for directly pro-

ducing pruned skeletons from noisy 2D shapes. For training, we

carefully created a dataset of noisy shape–skeleton pairs.We demon-

strated a carefully constructed architecture with few large shallow

kernels along with a multifeature extraction module performed bet-

ter than small size kernel deep architectures (both qualitatively and
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Figure 5: Skeletons generated by different networks and medial axis algorithm on noisy shapes with (a) sharp corners, (b)
complex junctions, (c), (d) shapes lacking enough structural information, (e)-(h) high curvatures. All shapes are noisy and hence
the medial axis algorithm creates spurious branches. The circled regions highlight areas where prediction is wrong or missing.

Figure 6: Robustness of pruning in presence of fine noise(row
1) and coarse noise (row 2) [as defined by [Rong and Ju 2023]].

quantitatively), particularly in data and resource constrained set-

tings. The introduced neighborhood-consistency (spurious-branch)

loss promoted connectivity and suppressed extraneous branches.

Limitations and future work: Our method may underperform on

geometrically degenerate cases, such as junctions where multiple

medial branches converge. While the model is highly parameter-

efficient, its inference time trails U-Net since current libraries are

optimized for 3×3 stacks. Reducing sequential stages like structure

conditioning we used is a promising direction to close this latency

gap.
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