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A B S T R A C T

Despite the widespread adoption of 3D CAD systems, 2D orthographic drawings re-
main integral to engineering workflows. However, millions of legacy drawings lack
corresponding 3D models, hindering their integration into modern simulation, manu-
facturing, and digital twin systems. Existing methods for 2D to 3D CAD retrieval often
fall short of meeting the structural precision required for engineering-grade drawings.

We propose a cross-modal retrieval framework that aligns vector-based 2D DXF
(Drawing Exchange Format) views with 3D CAD models using contrastive learning.
Our architecture integrates a Graphormer-based encoder for 2D input and a PointNet-
based encoder for 3D CAD models. We introduce a novel proximity-based spatial
encoding to enhance structural precision and robustness across varying view config-
urations. Using the filtered subset (∼283K) of the newly developed large-scale dataset
OrthoCAD-322K, extensive ablation and comparison studies demonstrate the robust-
ness and generalization of the model in different input conditions and architectures.

© 2026 Elsevier B.V. All rights reserved.

1. Introduction1

Computer-Aided Design (CAD) systems play a fundamen-2

tal role in engineering, with applications that span mechanical,3

aerospace, automotive, and architectural domains. Historically,4

engineering workflows have relied on 2D orthographic projec-5

tions, such as front, top, and side views, for tasks that include6

manufacturing, technical documentation, and communication.7

These projections are commonly stored as DXF files (Drawing8

Exchange Format), a vector-based CAD data format that facil-9

itates interoperability across design platforms. Despite earlier10

expectations that solid modeling systems would replace tradi-11

tional drafting systems, 2D CAD applications remained domi-12

nant even into the mid-2000s [1]. Before the widespread adop-13

tion of 3D modeling tools, early CAD systems primarily pro-14

duced 2D drawing DXF files, resulting in extensive repositories15

of legacy engineering data.16
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Fig. 1. Retrieval of 3D CAD model (BRep) using orthographic (DXF)
query.

A significant proportion of these drawing files lack corre- 17
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Table 1. Comparative analysis of existing 2D–3D CAD datasets in terms of sample size, CAD model types, 2D view formats, view configurations, and sup-
ported geometric primitives. Our proposed OrthoCAD-322K dataset offers significantly greater scale, standardization, and support for full orthographic
view projection compared to prior datasets, including Automatic 3D CAD Reconstruction [2], CAD2Program [3], PlankAssembly [4], RL-Based CAD
Reconstruction [5], Photo2CAD [6], SPARE3D [7], and Text2CAD [8].

Aspect Automatic 3D
CAD Reconst.

CAD2P-
ROGRAM

Plank-
Assembly

RL-Based CAD
Reconstruction Photo2CAD SPARE3D Text2CAD Ours

Total
Samples

2.9K 368K 26.7K 68.9K Not specified 21.5K 100K 322K

CAD Model
Type

B-Rep 3D customized
cabinet models

Cabinet
furniture

B-Rep CSG-based B-Rep and
CSG-based

B-Rep B-Rep

2D View File
Format

Vectorized
(SVG)

Rasterized Vectorized
(SVG)

Vectorized
(SVG)

Photos
(PDF, DXF, and
scanned
images)

Vectorized
(SVG) and
Rasterized

Vectorized
(SVG) and
Rasterized

Vectorized (DXF),
Rasterized and
SolidWorks Native (SLDDRW)

Views
Provided

Front,
Bottom,
Left

Front,
Side,
Top,
Section views

Front,
Top,
Side

Front,
Bottom,
Left

Front,
Top,
Side

Isometric +
Front,
Top,
Right

Isometric +
Front,
Top,
Side

Isometric +
Front, Back
Top, Bottom,
Left, Right +
Projected views for each
Orthographic View

Primitive
Types

Solid Mechanical
parts

373 cabinet
primitives

Axis-aligned
cuboids
(planks)

General
mechanical
primitives

Simple
Geometric
Primitives

Solid
Mechanical
parts

General
mechanical
components

General
mechanical
components

sponding 3D models [6] due to the limitations of contempo-1

rary CAD tools and the absence of formalized 3D modeling2

practices during earlier design stages. This lack of 3D geome-3

try presents several challenges: (1) manual reconstruction from4

drawing files is time-consuming and error-prone [9], often re-5

quiring expert interpretation; (2) the absence of 3D models lim-6

its the use of modern engineering tools such as finite element7

analysis (FEA) [10], digital twin simulation, and computer-8

aided manufacturing (CAM); and (3) design reuse is hindered,9

complicating integration into contemporary Product Lifecycle10

Management (PLM) systems.11

Although 3D reconstruction from 2D orthographic views has12

been extensively explored, the majority of existing methods re-13

main rule-based or heuristic. Several approaches [9] typically14

assume complete and clean input, and they often struggle with15

complex geometric features such as splines [2], nested loops,16

and topological ambiguities. Moreover, they are highly sen-17

sitive to real-world noise. In practical scenarios, engineering18

drawings frequently exhibit inconsistent view configurations19

and missing geometric entities (e.g., lines, arcs, splines).20

To address these challenges, recent research has introduced21

deep learning-based methods for reconstructing 3D models22

from 2D orthographic views. However, existing deep learn-23

ing approaches often target narrow applications such as cabinet24

or furniture design [3, 4]. These methods often fail to handle25

essential drawing elements such as spline curves [11] and typi-26

cally output unstructured point clouds rather than editable CAD27

models. Moreover, some are limited to primitive shapes [6] or28

support only basic modeling operations such as extrusion [5].29

Furthermore, many of these methods are trained on propri-30

etary [3] or narrowly spanning datasets that are often limited31

in geometric diversity, complexity, or scale. As summarized in32

Table 1, the existing datasets vary significantly in fidelity and33

structural completeness, restricting the development of scal-34

able and generalizable 2D to 3D learning systems. Addition-35

ally, while most prior work focuses on direct 3D reconstruction,36

the alternative task of cross-modal retrieval, retrieving a struc-37

turally relevant 3D CAD model from one or more orthographic38

views, remains comparatively underexplored. To address this 39

gap, we introduce OrthoCAD-322K the first large-scale dataset 40

with standardized orthographic and isometric views for 322,000 41

publicly available CAD models in both DXF and raster formats. 42

Retrieving 3D models from 2D orthographic views presents 43

its unique set of challenges. These 2D views, while geometri- 44

cally precise, lack depth cues, are susceptible to viewpoint de- 45

pendency, and often exhibit hidden line ambiguities [12, 13]. 46

Critical engineering features such as holes, ribs, fillets, and 47

chamfers may be partially or fully hidden in individual projec- 48

tions, requiring multiview synthesis for accurate interpretation. 49

In this work, we address the problem of retrieving 3D CAD 50

models from a variable number of orthographic views stored in 51

DXF files, which may be incomplete or contain partially miss- 52

ing geometric information (Fig. 1). We propose a deep learn- 53

ing framework that bridges the modality gap between 2D DXF 54

drawings and 3D geometry by aligning them in a shared embed- 55

ding space. Our method employs cross-modal contrastive learn- 56

ing, enabling robust retrieval. A key enabler of our approach is 57

the use of vector-based DXF files, which represent lines, arcs, 58

and splines with high fidelity and support the extraction of ge- 59

ometric and topological features [14]. Recent work shows that 60

vector-based graph attention networks outperform raster-based 61

methods in segmenting complex technical drawings [15]. 62

To encode 2D geometry, we adapt the Graphormer [16] ar- 63

chitecture by introducing a novel proximity-based spatial en- 64

coding specifically designed for CAD DXF views. This strat- 65

egy connects nodes based on their spatial closeness, enabling 66

efficient capture of local geometric relationships while avoid- 67

ing the high computational cost of shortest-path calculations in 68

dense graphs. For the 3D modality, we sample CAD surfaces 69

into point clouds and project them onto the faces of an Oriented 70

Bounding Box (OBB), which are then processed by a Point- 71

Net [17] encoder. The resulting 3D features are jointly aligned 72

with 2D view features in a shared embedding space. Our ap- 73

proach achieves strong retrieval performance, reaching 94.51% 74

top-1 accuracy with three orthographic views (front, top and 75

right), and remains robust even under incomplete input condi- 76
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tions.1

This paper makes the following contributions:2

• Developed the OrthoCAD-322K dataset comprising stan-3

dardized orthographic and isometric views for 322,000 pub-4

licly available BRep CAD models.5

• Proposed a novel cross-modal retrieval framework that aligns6

2D DXF orthographic views with 3D CAD models via con-7

trastive learning.8

• Designed a novel proximity-based spatial encoding for 2D9

views within the Graphormer encoder, offering a more effi-10

cient alternative to shortest-path encodings.11

2. Related Work12

The retrieval of 3D CAD models from 2D representa-13

tions has evolved significantly over several decades, with var-14

ious approaches that address the inherent challenges of cross-15

modal matching and geometric understanding. Early CAD re-16

trieval used global descriptors, structural encodings, and topol-17

ogy graphs, but lacked fine-grained discrimination, leading to18

learning-based methods [18]. Recent work has also explored19

structured formats like STEP for both classification and re-20

trieval tasks, utilizing Graph Neural Networks to learn from the21

format’s rich topological and semantic data [19].22

2.1. View Mapping and Multiview Fusion Techniques23

Various techniques have addressed the 2D–3D modality gap24

through view mapping and multiview reasoning, including25

methods for cross-domain alignment, multiview projection with26

canonical viewpoints, and feature aggregation strategies using27

CNNs, graph networks and attention mechanisms [18]. Other28

approaches utilize graph neural networks [20] and multilayer29

perceptrons [21] to jointly encode multiview structure. Al-30

though effective, most methods target rasterized renderings or31

sketch inputs and often lack support for the geometric fidelity32

and symbolic structure required in engineering grade CAD ap-33

plications [18].34

2.2. Sketch-Based 3D CAD Retrieval35

Retrieval methods based on sketches of orthographic views36

has been a prominent approach to bridge 2D and 3D represen-37

tations. Liu et al. [22] introduced a user-adaptive sketch-based38

CAD retrieval system using statistical modeling of individual39

drawing habits. Pu and Ramani [23] developed a 2D sketch-40

based interface that requires users to draw three orthographic41

views for reliable retrieval. Wang et al. [24] used a hybrid ap-42

proach combining geometric outlines and skeletal topologies.43

To address inaccuracies in query sketches, SketchClean-44

Net [25] was introduced as a learning-based approach to im-45

prove retrieval performance by denoising and correcting over-46

drawn or incomplete sketches. Building on this, SketchClean-47

GAN [26] used adversarial learning to further refine or com-48

plete defective sketches, showing improved robustness in large-49

scale retrieval scenarios. These methods leverage the CADS-50

ketchNet dataset [27], which includes annotated and synthetic51

hand-drawn sketches for engineering components.52

Other approaches such as Wang and Zhou [28] have em-53

ployed convolutional neural networks and contrastive learning54

to create joint embeddings between sketches and 2D renderings55

of 3D shapes for zero-shot retrieval. Su et al. [29] and Qi et 56

al. [30] extended this paradigm with multiview CNNs for 3D 57

shape recognition. 58

2.3. Datasets for 2D to 3D CAD Mapping 59

Existing datasets for 2D to 3D CAD reconstruction vary in 60

scale, geometric diversity, and modeling fidelity. As shown 61

in Table 1 datasets such as SPARE3D [7] contain limited col- 62

lections of synthetic CAD and CSG models that lack real- 63

world complexity. The Automatic 3D CAD Reconstruction 64

dataset [2], derived from Fusion360, excludes B-spline surfaces 65

and therefore lacks complex freeform geometries. 66

Domain-specific datasets like PlankAssembly [4] and 67

CAD2Program [3] focus solely on cabinet furniture, which re- 68

stricts their applicability to broader CAD tasks. PlankAssembly 69

[4] is further constrained to axis-aligned cuboids as its primary 70

primitive type, excluding curved geometries. 71

The reinforcement learning framework in [5] is trained on 72

a dataset of loop-path pairs extracted from 2D orthographic 73

drawings, enabling parametric CAD reconstruction primarily 74

through extrusion operations. GaussianCAD [11] provides a 75

dataset focused on 3D Gaussian Splatting for CAD reconstruc- 76

tion from three orthographic views. A notable recent contri- 77

bution, Text2CAD [8] introduces isometric and orthographic 78

(front, top, side) views as intermediates for text-to-CAD gen- 79

eration across a dataset of 100,000 models. Benchmark BRep 80

datasets such as ABC [31], DeepCAD [32], and Fusion360 [33] 81

provide rich parametric CAD models with high geometric fi- 82

delity. However, they lack associated 2D orthographic views. 83

3. Overview of the Proposed Approach 84

As illustrated in Fig. 2, this work presents a cross-modal re- 85

trieval framework that matches 2D orthographic DXF queries 86

to 3D CAD models. The system operates directly on structured 87

vector-based views (DXF) and employs a dual encoder archi- 88

tecture trained with contrastive learning. 89

To capture structural relationships, we introduce a novel 90

proximity-based spatial encoding. This connects entities based 91

on geometric closeness, allowing the model to learn spatial con- 92

text and view alignment without relying on computationally ex- 93

pensive shortest-path calculations. This encoding is embedded 94

within a Graphormer based encoder that models global interac- 95

tions across views. 96

In parallel, 3D CAD models are converted from STEP files 97

to surface-sampled point clouds. These are projected onto 98

six canonical planes and encoded using a PointNet [17]-based 99

network. The 2D and 3D encoders are trained jointly with 100

contrastive loss, bringing matched 2D and 3D representations 101

closer in a shared embedding space. 102

The key novelty of our approach lies in aligning these hetero- 103

geneous modalities, vectorized 2D views, and 3D point clouds, 104

within a shared embedding space. By leveraging vector geome- 105

try and spatially-aware encoding, the framework achieves high 106

retrieval accuracy (94.51% top-1 with three views: front, top 107

and right) and maintains robustness under partial or degraded 108

input, making it well suited for real-world industrial drawings. 109



4 Preprint Submitted for review /Computers & Graphics (2026)

Front 

Top

Right 

Pipeline 1 : DXF-Based Orthographic View Encoding

Embedding 
Space 

Similarity 
Matching

CAD Model Database

Top Retrieved 3D 
CAD Model

Geometric Entity Sampling

PointNet
Based Label 

Encoder

Pipeline 2 : 3D CAD Model Projection and Encoding

3D Wireframe 
Reconstruction Graph Construction

Graphormer
Based 
Query 

Encoder

Point Cloud Generation

Input Orthographic Views (DXF)

Projection on Bounding Box Faces

 Embedding Space 
and Retrieval

10.2 0.50.5
0.21 0.50.5
0.50.5 0.41
0.50.5 10.4

1
0.2
0.5

10.20.5 1
0.5

0.5

0.4
0.0
0.2

0.4
0.2

0.4
0.0
0.1

0.4
0.3

0.40.0 0.20.2
0.40.00.1 0.4

0.4
0.3 0.7

1
1

0.7

Proximity Based 
Spatial Encoding

Right Front 

Top

Fig. 2. Overview of the proposed Cross-Modal Retrieval Framework from 2D Orthographic views to 3D CAD Models.

4. Data Generation and preprocessing1

Our data generation process implements a pipeline for trans-2

forming CAD models (STEP) into 2D standardized represen-3

tation format. We integrate three CAD model repositories as4

source data. Fusion360 [34, 33], DeepCAD [32], and CAD-5

Parser [35]. Image-based hashing techniques are used for du-6

plicate elimination by capturing screenshots of 3D models from7

multiple viewpoints.8

4.1. Orthographic View Generation9

We implemented an automated pipeline to generate standard-10

ized 2D views from 3D STEP models using SolidWorks Task11

Scheduler. Each CAD model was converted to the SolidWorks12

native format (.sldprt) and rendered into one isometric and13

six orthographic views (front, back, top, bottom, left, right)14

based on a third-angle projection standard. A predefined draw-15

ing template ensured consistent layout and projection parame-16

ters across all samples.17

The resulting drawings (.slddrw) were exported in both18

DXF (vector) and raster formats for downstream processing.19

Fig. 3 summarizes the overall view generation and file conver-20

sion workflow.21

4.1.1. Data Cleaning and Generation Infrastructure22

To further improve the quality of the dataset, a lightweight23

graphical user interface (GUI) was developed to support man-24

ual inspection. A group of senior mechanical engineering un-25

dergraduates reviewed the dataset and identified two recurring26

issues: (i) Views collapsing into lines or points due to non-27

volumetric models and (ii) scaling errors where projections ex-28

tended beyond drawing sheet boundaries. A total of 7.4K views29

affected by issue (i) were excluded from the dataset. For issue30

(ii), instead of discarding the affected BRep models (1.3K in31

total), we refined the generation pipeline to apply uniform scal-32

ing, normalizing BRep into a consistent spatial extent prior to33

view generation.34
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Fig. 3. Framework for Multimodal CAD data generation.

The complete dataset was generated over a span of three 35

months for the initial full run using 12 parallel instances of 36

SolidWorks with shared storage. This was followed by an ad- 37

ditional two-week post-processing phase to handle failed or 38

restarted cases. In total, DXF and rasterized views were created 39

for 322,000 BRep CAD models. As illustrated in Fig. 4, the re- 40

sulting OrthoCAD-322K dataset offers rich geometric diversity, 41

with each sample comprising paired 2D views and correspond- 42

ing 3D models. 43

4.2. DXF Preprocessing 44

Preprocessing begins by parsing DXF files to extract geomet- 45

ric entities (lines, arcs, circles, splines, polylines, lwpolylines ( 46

lightweight polyline)) across six canonical orthographic views, 47

formally denoted as vi ∈ V = {v0, . . . , v5}, where v0 = front, 48

v1 = back, v2 = left, v3 = right, v4 = top, and v5 = bottom. Our 49

framework currently supports only geometric entities in DXF 50

files; annotations such as dimensions, tolerances, or symbols 51

must be removed through preprocessing. 52
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3D CAD 
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Isometric 
View

Six Orthographic Views (front, right, left, top, bottom, 
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Fig. 4. Sample from the Multimodal CAD Dataset comprising CAD models
(BRep), isometric view, and six standard orthographic views (front, back,
left, right, top, bottom), provided in both DXF (vector) and rasterized im-
age formats for each view.

To ensure computational feasibility and comply with the1

constraints of the Graphormer encoder, we filtered out DXF2

samples in which any single view among the six orthographic3

projections contained more than 100 geometric entities. This4

reduced the dataset from 322,000 to ∼283,000 CAD models5

(≈ 12.11% excluded). This filtered subset of ∼283,000 models6

was used for all retrieval training and evaluation experiments7

reported in this work.8

4.2.1. Geometric Entity Sampling Methodology9

Adaptive sampling is an adaptive point-allocation strategy10

that converts each geometric entity into a fixed-size point set11

by allocating sample points according to local geometric impor-12

tance, concentrating them near endpoints and high-curvature re-13

gions to improve shape-representation accuracy (see Fig. 5 A).14

This method enhances shape representation compared to uni-15

form sampling, while keeping the number of sample points per16

entity fixed.17

Each geometric entity is sampled into 100 points adaptively.18

Type-specific strategies are used to preserve the overall shape.19

For a given entity e, the resulting set of sampled points is de-20

fined as Pe = {p1, p2, . . . , p100} ⊂ R2.21

The Sampling methodology varies with geometric entity type:22

• Lines are discretized using adaptive cosine-based interpola-23

tion that strategically biases point distribution toward end-24

points:25

ti = 0.5(1 − cos(πi/99)), pi = (1 − ti)pstart + ti pend (1)

26
• Arcs undergo adaptive angular interpolation with similar end-27

point emphasis:28

θi = θs + (θe − θs) ·
1 − cos(πi/99)

2
, pi = c + r(cos θi, sin θi)

(2)
29

• Circles utilize uniform angular sampling. θi = 2πi/10030

• Polylines and lwpolylines are sampled using a combination of31

straight and curved segments to capture their overall shape.32

• Splines are sampled adaptively to capture geometric detail,33

concentrating points in high-curvature regions1 [36].34

1Curvature is computed as κ(u) = |x′(u)y′′(u)−y′(u)x′′(u)|
(x′(u)2+y′(u)2)3/2 , with a sampling

weight w(u) = κ(u)0.5 guiding point selection along the B-spline curve γ(u).

4.2.2. Wireframe Reconstruction Process 35

The 2D points sampled from each view are lifted into 3D 36

using view-dependent transformation functions. If view labels 37

are missing, they can be inferred using geometric heuristics. 38

The view with the largest projection area and most visible fea- 39

tures is typically identified as the front view. Other views are 40

matched by comparing shared dimensions, such as height or 41

width, with the identified front. For each view vi ∈ V , a trans- 42

formation Ti : R2 → R3 maps the 2D coordinates to their 3D 43

positions, as shown in Fig. 5 B: 44

Ti(p) =


(x, 0, y) if vi ∈ {front, back},
(0, x, y) if vi ∈ {left, right},
(x, y, 0) if vi ∈ {top, bottom},

(3)

Here, Ti map the 2D points of view vi ∈ V = {v0, . . . , v5} to 45

their corresponding 3D coordinates. 46

Following the transformation, the 3D entities of all views are 47

merged to construct a unified 3D wireframe graph G = (N, E), 48

where each node n ∈ N corresponds to a sampled entity and 49

encodes a feature vector: 50

fn = [ov, oe, vb, vec(Pe)] (4)

where: 51
• ov ∈ {0, 1}6 is a one-hot encoding of the view type, 52

• oe ∈ {0, 1}6 is a one-hot encoding of the entity type, 53

• vb ∈ {0, 1}4 is the visibility flag vector representing occlusion 54

status, 55

• vec(Pe) ∈ R300 is the flattened sampled point cloud. 56

The visibility vector vb is represented using a 4D one-hot en- 57

coding, with [0.0, 1.0, 0.0, 0.0] indicating visible entities and 58

[0.0, 0.0, 0.0, 1.0] indicating hidden entities. The 4D format is 59

designed to ensure that visibility features contribute meaning- 60

fully during training, despite the presence of 300 geometric fea- 61

tures. This helps the model attend to visibility cues effectively. 62

Edges are formed between pairs of nodes based on spatial 63

proximity, and each edge ei j ∈ E is assigned attributes ai j (edge 64

attributes) as: 65

ai j =

[
1 −

di j

dmax
, di j, ci, c j

]
(5)

where di j is the Euclidean distance between the centers ci and 66

c j of entities i and j, and dmax is the maximum pairwise distance 67

observed used for normalization. 68

To support stable learning, the graph is normalized. All 3D 69

points are shifted so the graph is centered at the origin. It is 70

then scaled so its largest dimension is one unit. This makes the 71

graph scale-invariant and consistent across samples. The final 72

graph is saved in PyTorch Geometric format (.pt). 73

4.3. Data preprocessing for STEP file labels 74

Each 3D CAD model is first converted from STEP format to 75

a triangulated mesh (OBJ) representation. To obtain the sur- 76

face point cloud from each mesh, we use a deterministic, area- 77

weighted sampling strategy. Specifically, points are sampled 78

over triangle surfaces in proportion to their area using barycen- 79

tric interpolation with a fixed seed. This prioritizes sampling 80

in curved or highly tessellated regions, such as cylindrical sur- 81

faces, while avoiding undersampling due to uniform spatial al- 82

location. The approach ensures reproducibility and consistent 83

point cloud sizes while maintaining geometric fidelity. 84
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Fig. 5. Fig. A: Uniform vs Adaptive Sampling. Fig. B: Views with Points Sampled from DXF. The figure illustrates the transformation of standard DXF
orthographic views into a unified 3D wireframe through adaptive sampling. Fig. C: STEP to Point Cloud. The CAD model is converted into a surface-
sampled point cloud and projected for alignment in a shared embedding space.

To generate the projected point cloud, we first compute an1

oriented bounding box (OBB) for each CAD model. Unlike an2

axis-aligned bounding box, the OBB aligns with the object’s lo-3

cal coordinate system, preserving its intrinsic orientation. The4

minimum and maximum extents along the local axes define the5

bounding volume. Each sampled surface point is then orthog-6

onally projected onto the six faces of the OBB. This results in7

a structured 3D point cloud that captures per-face projections8

of the object’s geometry. Fig. 5 C illustrates this conversion9

pipeline from STEP files to projected point clouds.10

The OBB is first centered by translating it to the origin, and11

then normalized by uniformly scaling it such that its longest di-12

mension equals one. This effectively fits the geometry within a13

unit cube while preserving the aspect ratio and intrinsic orien-14

tation of the projections. While certain axes may not span the15

full [−0.5, 0.5] range, this normalization ensures consistent and16

scale-invariant representation across the dataset.17

5. Network Architecture18

5.1. Query Encoder19

We adapted Graphormer [16] as the encoder for 2D ortho-20

graphic views due to its ability to model global structural re-21

lationships. The encoder operates on fully connected graphs22

constructed from geometric entities extracted via DXF prepro-23

cessing (Section 4.2), with node features defined in Eq. 4 and24

edge attributes encoding spatial proximity.25

Similarly to the original Graphormer [16], we incorporate the26

centrality encoding to capture local structural roles. Each node27

is augmented with degree-based embeddings derived from its28

in-degree and out-degree.29

5.1.1. Geometric and Visibility-Aware Feature Encoding30

To account for hidden entities, we introduce a dedicated vis-31

ibility encoding mechanism. Each entity is annotated with a32

4-dimensional binary visibility vector vb, representing its oc- 33

clusion status in orthographic views. This vector is projected 34

into a learned latent space via a linear transformation ϕvis(vb) 35

and concatenated with the geometric features, forming part of 36

a visibility-aware encoding pipeline (see Fig. 6) that integrates 37

view, entity, and geometric attributes. 38
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[6:12] [12:16][:6]

[:6] [6:12] [12:16]

n x [6:12] n x [12:16]n x [:6]

n x [6:12] n x [12:28] n x [28:328]n x [:6]

n x [6:12] n x [12:16] n x [16:316]n x [:6]

View 
Info
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Visibility 
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Adaptively 
Sampled 

Points

n x Nodes

Visibility Encoding 
(? vis(Vb))

Node Attr Masking Mechanism

n x Nodes

n x Nodes

Node1

Node2

Node3

Noden

Fig. 6. Node Attribute Processing Pipeline: Encoding View, Entity, Visibil-
ity, and Sampled Geometry Features.

To ensure consistent input dimensionality across all geomet- 39

ric entities, we sample 100 points per entity, regardless of com- 40

plexity. While this guarantees fixed-size input, it can introduce 41

redundancy for simple shapes such as short lines or arcs. To 42
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address this redundancy, we employ a feature-masking mech-1

anism that selectively suppresses less informative points while2

preserving critical geometric details.3

We apply selective masking to the last 300 dimensions of4

each node’s feature vector, representing 100 sampled (x, y, z)5

points. These are reshaped to Rn×100×3, and attention scores are6

computed via a learnable projection:7

α = softmax(X(−300:)W), where W ∈ R3×1

8

X(−300:) = X(−300:) ⊙ 1[α ≥ µ(α, dim = 1)] (6)

Only 3D points with attention above the per-node mean are re-9

tained, and the masked features are flattened back to Rn×300 for10

downstream use.11

5.1.2. Proximity-Based Spatial Encoding12

While the original Graphormer architecture models struc-13

tural relationships using discrete shortest-path distances be-14

tween nodes, our fully connected graph requires a more ge-15

ometrically intuitive formulation. We take advantage of the16

proximity-based spatial encoding defined in Eq. 5, where the17

notion of proximity is explicitly encoded via edge attributes re-18

flecting normalized Euclidean closeness between entity centers.19

This approach ensures that spatially closer entities are as-20

signed higher attention scores during self-attention, promoting21

local structure preservation while still allowing for global con-22

text aggregation.23

The spatial bias term bi j is defined as:24

bi j = β · wi j (7)

where β is a learnable scalar parameter, and wi j is the25

proximity-based weight between nodes i and j derived from the26

normalized Euclidean closeness as defined in Eq. 5.27
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Fig. 7. Illustration of proximity-based spatial encoding using sample back
and bottom views. Nodes represent geometric entities; edge weights corre-
spond to normalized proximity scores used to compute the bias matrix.

Fig. 7 illustrates this process using back and bottom ortho-28

graphic views. The parsed geometric entities are converted to29

fully connected graph nodes, with edge weights derived from 30

proximity scores. The resulting wireframe graph forms a prox- 31

imity score matrix encoding spatial affinities between node 32

pairs. 33
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Distance
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Fig. 8. Edge Attribute Matrix Construction based on Entity Proximity and
Spatial Relationships.
5.1.3. Edge Encoding 34

We adopt a straightforward approach to edge encoding using 35

basic geometric cues, as illustrated in Fig. 8. Edge biases ci j 36

are defined based on normalized proximity and relative spatial 37

positions between entity centers, as described in Eq. 5. 38

The edge-aware bias term ci j is computed simply as: 39

ci j = ai j · wE (8)

where ai j ∈ RdE is the complete edge attribute vector between 40

nodes i and j that encodes proximity and spatial relationships, 41

and wE ∈ RdE is a learnable weight vector associated with edge 42

features. 43

5.1.4. Graphormer Layers with Spatial and Edge Bias 44

The core of the network consists of a stack of L Graphormer 45

encoder layers. Each layer applies multi-head self-attention, 46

enhanced with both spatial and edge-based biases: 47

Attention(i, j) =
q⊤i k j
√

d
+ bi j + ci j (9)

Where: 48
• qi = WQhi is the query vector of node i, 49

• k j = WKh j is the key vector of node j, 50

• d is the dimensionality of the query and key vectors. 51

Here, WQ and WK ∈ Rd×d are learned projection matrices, 52

and hi, h j ∈ Rd are the input feature embeddings of nodes i and 53

j, respectively. The term bi j denotes the spatial bias (Eq. 7), 54

while ci j denotes the edge-aware bias (Eq. 8). Each attention 55

block is followed by a position-wise feedforward network with 56

residual connections and layer normalization, consistent with 57

the original Transformer architecture. 58

5.1.5. Graph-Level Representation and Pooling 59

To obtain a global graph embedding hG ∈ Rdout , we ap- 60

ply the mean pooling to the node representations in the final 61

Graphormer layer: 62hG =
1
|N |

∑
n∈N

hn (10)

where hn denotes the final hidden representation of node n, and 63

|N | is the total number of nodes in the graph. 64

5.2. Label Encoder 65

To encode 3D CAD models, we employ PointNet [17] on 66

projected point clouds (Section 4.3), producing shape-aware 67

embeddings. PointNet is chosen for its permutation invari- 68

ance, robustness to noise, and computational efficiency com- 69

pared to volumetric or transformer-based alternatives. In our 70
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Table 2. Training implementation details and encoder configurations for
the dual-encoder contrastive learning framework.

Parameter Query Encoder Label Encoder

Backbone Graphormer [16] PointNet [17]
#Layers 4 3 MLP blocks
Hidden Dim d 256 1024 (pre-proj)
FFN Dim 512 512→256 (MLP)
#Attention Heads 8 –
Head Dim 32 –
FFN Dropout 0.1 –
Attention Dropout 0.1 –
Pooling Type Mean Pooling Global Max
Output Embedding Dim 256 256
Feature Transform – Enabled

Shared Contrastive Learning Settings

Optimizer AdamW (β1=0.9, β2=0.999)
Learning Rate 1e-4
Weight Decay 1e-5
Scheduler Cosine Annealing (Tmax = 100)
Batch Size 32
Epochs 100
Contrastive Loss Temp. (τ) 0.07
Feature Trans. Reg. Weight 0.001 (Pointnet only)
Implementation Framework PyTorch Lightning 2.0
Hardware used RTX 4080, Intel i7-12700

ablation study (Section 9), it outperformed Point Cloud Trans-1

former [37] in both retrieval accuracy and training stability.2

The resulting 1024-dimensional global descriptor is passed3

through a two-layer MLP comprising linear layers with 5124

and dout units, batch normalization, and ReLU activations. This5

yields the final embedding hP ∈ Rdout , aligned with the query6

encoder’s latent space.7

6. Training Methodology, Loss Function, and Implementa-8

tion Details9

Our framework uses the dual encoder setup in Section 5,10

where DXF wireframes and 3D point clouds are mapped to a11

shared 256-dimensional space. The overall training procedure,12

including feature extraction, similarity computation, and con-13

trastive optimization, is summarized in Algorithm 1. Training14

implementation details and model configurations for the query15

encoder (Graphormer) and label encoder (PointNet) are pro-16

vided in Table 2. The dataset of ∼283,000 filtered CAD mod-17

els is randomly split into 70% for training (∼198,100 samples),18

15% for validation (∼42,450 samples), and 15% for testing19

(∼42,450 samples).20

6.1. Contrastive Learning Objective21

Both encoders are trained jointly using an InfoNCE con-22

trastive loss formulation [38]:23

Lcontrastive = −
1
N

N∑
i=1

log
exp
(
s(ei

g, e
i
p)/τ
)

∑N
j=1 exp

(
s(ei

g, e
j
p)/τ
) (11)

24

Algorithm 1: Training Strategy for Cross-Modal Re-
trieval
Input: Paired datasetD = {(G, P)}; learning rate η;

temperature τ; regularization weight λ
Output: Trained encoders fG and fP

Initialize encoders fG, fP with parameters θG, θP
foreach epoch do

foreach batch {(Gb, Pb)} do
Attn(i, j)← q⊤i k j

√
d
+ βwi j + ai j ·wE // Node attention

zG ← fG(Gb) // Encode DXF graph
zP,T ← fP(Pb) // Encode point cloud
ẑG ← zG/∥zG∥, ẑP ← zP/∥zP∥ // Normalize
Li j ← ẑi

G · ẑ
j
P/τ // Similarity logits

Lcls ← CrossEntropy(L, targets) // Contrastive loss
Lreg ←

∑
∥TT⊤ − I∥2F // Transform regularizer

Ltotal ← Lcls + λ · Lreg // Total loss
θG ← θG − η∇θG Ltotal

θP ← θP − η∇θP Ltotal

25

where s(·, ·) denotes cosine similarity, ei
g and ei

p are the em- 26

beddings of the ith sample from the graph and projection en- 27

coders respectively, τ is a temperature parameter controlling the 28

distribution sharpness, and N is the batch size. 29

To further stabilize training and promote invariance in geo- 30

metric transformations, we incorporate a regularization term on 31

the feature transformation matrix, following the technique in- 32

troduced in PointNet [17]: 33

Lreg =
∥∥∥I − AA⊤

∥∥∥2
F (12)

34where A is the learned transformation matrix and ∥ · ∥F de- 35

notes the Frobenius norm. This term encourages A being close 36

to orthogonal, thus preserving the geometric structure of point 37

cloud features and preventing degenerate mappings. 38

The final loss function combines these components with a 39

weighting factor: 40
L = Lcontrastive + λLreg (13)

41We adopt λ = 0.001 in alignment with the empirically val- 42

idated configuration proposed in PointNet [17], where it was 43

shown to improve training stability and generalization. 44

7. Experimental Results and Analysis 45

7.1. Experimental Setup 46

We trained two categories of models using consistent hy- 47

perparameter settings to ensure fair comparison, with the ex- 48

ception of Model M6, which used half the batch size due to 49

computational constraints. As the OrthoCAD-322K dataset 50

does not contain class labels, retrieval performance was eval- 51

uated using three standard metrics: Top-1 accuracy, Top-5 ac- 52

curacy, and Mean Reciprocal Rank (MRR). All experiments 53

were conducted on the filtered subset of ∼283K models from 54

OrthoCAD-322K. 55

• Fixed view models (M1–M6): Each model was trained with 56

a fixed number of orthographic views, incrementally added 57

in canonical order: front, top, right, left, back, and bottom. 58

For example, the 1 view (M1) setting corresponds only to 59

the front view, while the 6 view (M6) setting includes all six 60

standard projections. 61
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Train Model Configuration

Fixed Number of Views
Models (M1 - M6)

Mixed Views
Models (M7 - M9)

Top-1 Retr ieval Accuracy

Fig. 9. Top-1 retrieval accuracy under varying orthographic view configurations. Left: Fixed-view models (M1–M6) show reduced accuracy with limited
views (e.g., M1). Right: Mixed-view models (M7–M9) demonstrate greater robustness. For example M7, trained with 50% one-view and 50% two-view
samples. Training with ≥3 views (e.g., M3–M4, M8) consistently yields higher max and average accuracy across test sets (T1–T6).

Table 3. Top-1 retrieval accuracy (%) across models (M1–M9) and test sets
(T1–T6 and T1′). Columns T1′ and T’i report the mean accuracy (µ) with
standard deviation (σ). The T’i column corresponds to the randomized test
set used for M1–M6 (e.g., T2′ for M2), and the best randomized result for
M7–M9.
M T T1 T1′ (µ ± σ) T2 T3 T4 T5 T6 T’i (µ ± σ)
M1 92.95 79.45 ± 2.06 49.48 44.23 41.63 33.70 31.32 79.45 ± 2.06
M2 76.80 69.34 ± 1.24 94.02 93.21 85.66 83.49 80.83 90.70 ± 0.71
M3 68.89 61.61 ± 1.92 92.97 94.51 93.74 93.10 91.89 91.89 ± 0.55
M4 38.57 34.04 ± 2.32 92.00 92.96 94.28 93.83 93.40 89.93 ± 0.67
M5 9.71 5.37 ± 2.43 80.62 91.09 92.56 94.10 93.71 89.83 ± 0.72
M6 29.13 23.61 ± 1.12 79.47 87.63 89.17 91.98 94.01 89.68 ± 0.63
M7 92.96 83.10 ± 1.18 93.52 91.86 79.36 72.67 66.78 91.34 ± 0.66
M8 93.17 84.52 ± 1.09 94.05 94.05 93.32 91.75 90.07 91.51 ± 0.60
M9 92.31 83.09 ± 1.11 94.02 94.07 94.10 92.00 89.34 91.07 ± 0.58

• M1’: A variant of M1 trained on single orthographic views,1

where the single view is randomly selected from any of the2

six standard directions: front, right, back, left, top, or bottom.3

• Mixed view models (M7–M9): Each model was trained on4

a balanced dataset comprising equal proportions of samples5

with different numbers of orthographic views:6

◦ M7: equally sampled from 1 and 2 views7

◦ M8: equally sampled from 1, 2, and 3 views8

◦ M9: equally sampled from 1, 2, 3, and 4 views9

• Fixed view test sets (T1–T6): Contain 1 to 6 orthographic10

views in a predefined order, matching the view counts used11

during training. (e.g., T3 = front, top, right).12

• Random-view test sets (T1’–T6’) also contain 1 to 6 views,13

but the views are selected in random order for each sample14

(e.g., a T3’ sample might include the right, bottom, and back15

views). We generated five randomized replicates for each of16

the six randomized view sets (T1’–T6’), resulting in 5 × 617

diverse subsets.18

We evaluated cross-generalization performance by testing19

across all model-test set combinations (M1–M9 × T1–T6). For20

the random-view sets (M1–M9×T1’–T6’), we repeated testing21

five times and report the mean ± standard deviation in Table 3.22

7.2. Critical Analysis of Cross-Modal Generalization Results23

Table 3 reports the Top-1 retrieval accuracy across all combi-24

nations of models and test sets, with performance trends visu-25

alized in Fig. 9. Table 4 presents the Top-5 accuracy and Mean26

Table 4. Top-5 retrieval accuracy (%) and Mean Reciprocal Rank (MRR)
of models M1–M6, each evaluated on its best-performing input setting Ti
(e.g., M1 on T1, M2 on T2, etc.).

Metric M1 M2 M3 M4 M5 M6

Accuracy (T i) 95.73 96.11 96.71 96.14 95.87 95.06
MRR (T i) 0.9482 0.9537 0.9567 0.9533 0.9501 0.9426

Reciprocal Rank (MRR) for the best-performing configurations 27

of models M1 through M6. Our cross-modal evaluation reveals 28

the following key findings: 29

• M3 - View Completeness: Model M3 achieved the highest 30

Top-1 accuracy (94.51%) on fixed three-view inputs (T3), 31

which include the front view and maintained strong perfor- 32

mance on randomized views ((91.89 ± 0.55)% on T3’). It 33

also led in Top-5 accuracy (96.71%) and MRR (0.9567) on 34

T3, highlighting consistent top-ranked retrievals. This sug- 35

gests that three orthographic views represent an optimal bal- 36

ance between geometric completeness and computational ef- 37

ficiency. Given the inherent viewpoint symmetry in ortho- 38

graphic projections, adding more views (M5-M6) beyond 39

three tends to introduce redundant information without yield- 40

ing significant performance gains. 41

• Mixed-View Robustness: Mixed-view Models (M7-M9), 42

trained with a variable number of input views, exhib- 43

ited strong generalization compared to fixed view models 44

(M1–M6). Even when evaluated on the randomized single 45

view set (T1’), mixed-view models (M7-M9) consistently 46

outperformed all fixed-view counterparts (M1-M6), demon- 47

strating superior generalization and robustness to varying in- 48

put configurations. 49

• Stability under View Variations: Across five replicates for 50

each of the six test sets (T1′–T6′), models M2–M9 exhib- 51

ited a mean Top-1 accuracy drop of roughly 2%–4%, indi- 52

cating moderate sensitivity to input variation (see last col- 53

umn of Table 3). The low standard deviation (∼0.5%–0.7%) 54

across models M2–M9 further confirms consistent general- 55

ization under varying view configurations. M1, in contrast, 56

shows a higher standard deviation of 2.06% on T1′. 57

• Bias in M1: Model M1, trained exclusively on front views, 58



10 Preprint Submitted for review /Computers & Graphics (2026)

achieved 92.95% on T1 but dropped to (79.45 ± 2.06)% on1

T1’, indicating overfitting to the more detailed yet depth-2

limited front view. In contrast, Model M1’, trained on single3

views uniformly sampled from all standard directions (e.g.,4

front, top, right), achieved a comparable score of (79.34 ±5

0.3)% on T1’. This suggests that M1’s strong performance6

may be driven by dataset bias favoring visual richness of the7

front view, rather than true view-invariant feature learning.8

• View-Specific Gaps: This limitation persists beyond M1. As9

shown in the T1 column of Table 3, models trained with mul-10

tiple views (M2–M6) exhibit reduced retrieval accuracy on11

front-view inputs. This gap likely arises from their predomi-12

nant exposure to depth-rich projections during training, while13

front views inherently lack explicit depth cues.14

• Benefits of Mixed-View Training: The view-specific bias ob-15

served in M1 and M2–M6, stemming from exclusive expo-16

sure to either views lacking depth cues or depth-rich views,17

was effectively addressed in Models M7–M9. Trained on18

mixed views, these models exhibited notable improvements19

in generalization. This underscores the importance of var-20

ied viewpoint exposure in promoting view-invariant struc-21

tural learning, a crucial step toward practical robustness.22

• Limits of One-View Input: Despite overall improvements,23

Models M7–M9 trained with varying numbers of views still24

exhibited a residual drop in accuracy on T1’. This under-25

scores the inherent challenge of recovering 3D structure from26

single-view inputs that lack depth cues.27

7.3. Qualitative Analysis of Retrieved Models28

The qualitative results in Fig. 10 are generated using Model29

M3, evaluated on the test sets T1 through T4. The figure illus-30

trates the effect of varying the number of query orthographic31

views (V) on CAD retrieval. As V increases, retrieval accuracy32

improves. With a single view (V = 1), retrievals are often im-33

precise, returning structurally similar but incorrect models. In-34

creasing to V = 2 and V = 3 leads to progressively more accu-35

rate retrievals. Fig. 10 (highlighted within the dotted boundary)36

also presents challenging cases, such as spring-like shapes and37

thin parts with multiple holes, where retrieval struggles or fails38

even with multiple views. These examples underscore the lim-39

itations of orthographic projections in capturing fine geometric40

details and occluded features.41

7.4. Robustness to Partial Geometry, Geometric Perturbations,42

and Viewpoint Deviations43

To simulate scenarios with incomplete or corrupted vector44

files, where some entities may be missing during parsing, we45

evaluated the robustness of Model M3 by randomly removing46

a fixed percentage of geometric entities from the query views.47

The experiment was conducted at drop rates ranging from 10%48

to 50%, using the T3 test set. As shown in Table 5 A, Model49

M3 performed well even under these conditions, with accuracy50

remaining high at 91.89% at a 30% drop rate and 86.96% at51

50%, demonstrating its robustness to missing data.52

Furthermore, to simulate minor geometric perturbations that53

may be commonly introduced during design iterations, we aug-54

mented the 3D models by adding one or two small protrusions,55

such as cubes or cylinders, and used these modified versions as56

retrieval targets. As indicated in Table 5 B, while M3 exhibits57

robustness to small-scale deformations, its accuracy decreases 58

with larger protrusions, underscoring sensitivity to topological 59

inconsistencies. 60

To evaluate generalization under consistent viewpoint devia- 61

tions, we re-assessed model M3 on 10,000 CAD models by ap- 62

plying rigid-body rotations to the entire object along the X-axis 63

at increments of 5◦ up to 45◦, while keeping the retrieval targets 64

unchanged. For each rotation, new orthographic view triplets 65

(Front, Top, Side) were rendered while preserving mutual or- 66

thogonality. While Top-1 accuracy showed a marked decline 67

with increasing rotation angles due to geometric distortions in 68

the DXF projections, Top-5 accuracy exhibited a more grad- 69

ual decrease, maintaining 64.79% at 45◦. This suggests that the 70

model retains a degree of retrieval consistency under systematic 71

viewpoint shifts (Table 5 C). 72

Table 5. Top-1 retrieval accuracy of Model M3 under three robustness sce-
narios: (i) partial geometry degradation due to entity drop, (ii) structural
mismatch induced by synthetic protrusions, and (iii) viewpoint deviations
via rotation.

A. Partial Geometry (Entity Drop)

Entity Drop (%) Baseline 10 20 30 40 50
Top-1 Accuracy (%) 94.51 94.22 94.10 91.89 89.60 86.96

B. Structural Mismatch (Protrusion-Based)

Protrusion type 5% 7.5% 10% 15% 2 x 3% 2 x 5%
Top-1 Accuracy (%) 88.41 82.41 79.43 64.76 81.53 74.76

C. Viewpoint Deviation (Global Object Rotation Along X-Axis)

Rotation Angle (◦) 0 5 10 20 30 45
Top-1 Accuracy (%) 91.75 80.37 68.75 49.47 40.99 36.44
Top-5 Accuracy (%) 97.98 96.96 94.47 83.08 69.97 64.79

8. Comparison Study: Encoder Architectures for DXF- 73

Based Retrieval 74

To benchmark our approach, all state-of-the-art models were 75

trained and evaluated on our proposed dataset across modali- 76

ties, except for ViT- and MVCNN-based architectures, which 77

were fine-tuned on the proposed dataset using open-source pre- 78

trained weights (see Table 6). In the 3D domain, PointNet out- 79

performed Point Cloud Transformer (PCT) [37], which, despite 80

using global self-attention, saw accuracy drops (4.34% on test 81

set T3 (front, top and right), 6.75% on average) due to its lack 82

of spatial priors. PointNet’s architecture, attuned to spatial reg- 83

ularities, proved more effective for structured CAD data. 84

For 2D DXF vector inputs, while GCN and GAT could 85

encode relational structures, they lacked positional encoding. 86

GraphGPS [39] improved performance by combining local 87

message passing with global attention (91.68% on T3), but 88

the Graphormer variant surpassed all by capturing both spatial 89

proximity and structural context crucial for engineering views. 90

Raster-based models like MVCNN [40, 41] and Multi- 91

ViT [42] underperformed, with the best configuration (Multi- 92

ViT+Attn) reaching only 88.12% on T3, compared to 93

Graphormer’s 94.51%. This performance gap arises because 94

rasterization often obscures fine geometric and topological de- 95

tails, whereas DXF representations preserve vector-level preci- 96

sion critical for engineering-grade retrieval. 97

We implemented a cross-modal baseline using the Siamese 98

architecture from CADSketchNet [27], which aligns 2D raster 99

sketches with rendered CAD views in a shared embedding 100

space. Although effective in bridging modalities, it achieved 101
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Fig. 10. Qualitative results of CAD model retrieval for orthographic view queries (V = number of query views), evaluated using model M3.
Table 6. Comparison of T3 accuracy/loss and MRR, with average accu-
racy/loss across views T1–T6. The fixed-view test set T3 consists of the
front, top, and right views. Bold values indicate the best-performing model.

Model T3 T3 MRR Avg T1–T6 Avg T1–T6
Acc (%) Loss Acc (%) Loss

Ours 94.51 2.7009 0.9567 89.18 3.1673
GraphGPS 91.68↓ 3.2341↑ 0.9548↓ 85.89↓ 3.9825↑
GAT 91.03↓ 3.6661↑ 0.9544↓ 85.59↓ 4.3981↑
PCT 90.17↓ 3.0818↑ 0.9345↓ 82.43↓ 3.3937↑
GCN 85.18↓ 3.0752↑ 0.9051↓ 68.09↓ 3.5285↑

Multi-ViT+Attn 88.12↓ 3.5421↑ 0.9416↓ 80.33↓ 4.3287↑
MVCNN-SA 86.67↓ 3.8825↑ 0.9102↓ 76.29↓ 4.1001↑
Multi-ViT 85.43↓ 5.9808↑ 0.8997↓ 76.43↓ 5.9430↑
MVCNN 84.03↓ 3.9492↑ 0.8999↓ 74.32↓ 4.4021↑

CADSketchNet 58.93↓ – 0.8120↓ 48.01↓ –

lower accuracy (58.93% on T3), indicating that raster-only in-1

puts may lack the geometric precision needed for CAD re-2

trieval. Loss values are omitted from Table 6 due to differing3

loss formulations.4

Overall, these results highlight that using vector-based en-5

coders with spatial and structural information is key to achiev-6

ing accurate CAD model retrieval.7

9. Ablation Study8

We conduct an ablation study to evaluate the contribution of9

key architectural components in a model trained with three or-10

thographic views (M3). We evaluate performance on T3 and11

T1–T6, with Table 7 showing accuracy and loss drops for each12

ablation. Our results highlight several key findings:13

• Visibility Encoding and Node Masking: Removing either of14

these components results in accuracy drops of up to 1.43%15

(average across T1–T6), with a larger degradation of 2.67%16

when both are removed, confirming their importance.17

• Raw Point Cloud Representation: Bypassing projections18

causes major performance loss, reflecting the challenge of19

aligning unordered 3D points with structured 2D graphs.20

Structured projections retain geometric priors crucial for21

cross-modal correspondence.22

• Loss Function: Replacing contrastive loss with triplet loss23

results in the largest accuracy drop of 8.65% on T3 and24

10.99% on average, emphasizing the effectiveness of con- 25

trastive learning for aligning 2D and 3D embeddings. 26

Table 7. Ablation Study: Change in Top-1 retrieval accuracy (%) and loss
of the M3 model on the 3-view test set (T3) and the average across T1–T6.
Configuration ∆ Acc ∆ Avg. Acc ∆ Loss ∆ Avg. Loss

No Visibility Encoding 0.92%↓ 1.23%↓ 0.5860↑ 0.9370↑
Without Node Masking 0.83%↓ 1.43%↓ 0.2022↑ 0.4659↑
No Visibility Encoding+
Without Node Masking

1.98%↓ 2.67%↓ 1.7299↑ 2.0922↑

Raw Point Cloud (No Projection) 7.01%↓ 15.01%↓ 1.7356↑ 2.6224↑
Triplet Loss (Instead of Contrastive) 8.65%↓ 10.99%↓ 2.5914↑ 3.0111↑

10. Conclusion and Future Work 27

We proposed a cross-modal retrieval framework to retrieve 28

3D CAD models from 2D orthographic DXF views, address- 29

ing the challenge of legacy data reuse in engineering design. 30

Key contributions include a dual encoder architecture that com- 31

bines Graphormer and PointNet, a novel proximity-based spa- 32

tial encoding strategy, and the newly developed OrthoCAD- 33

322K dataset. Our method achieves a top-1 retrieval accuracy of 34

94.51% on fixed three-view inputs (T3), which include the front 35

view and demonstrates strong generalization under incomplete 36

and variable input conditions. Extensive ablation and com- 37

parison studies support the effectiveness of our architectural 38

choices. All experiments were conducted on the filtered sub- 39

set of ∼283K models from OrthoCAD-322K. Future work will 40

focus on supporting assembly retrieval, incorporating drawing 41

annotations, and adapting the framework to specialized indus- 42

tries such as aerospace and automotive involving sectional and 43

auxiliary views. 44

Author Note 45

During the preparation of this work the author(s) used Chat- 46

GPT in order to paraphrase certain sections for improved clarity 47

and readability. After using this tool, the author(s) reviewed and 48

edited the content as needed and take(s) full responsibility for 49

the content of the publication. 50
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