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Despite the widespread adoption of 3D CAD systems, 2D orthographic drawings re-
main integral to engineering workflows. However, millions of legacy drawings lack
corresponding 3D models, hindering their integration into modern simulation, manu-
facturing, and digital twin systems. Existing methods for 2D to 3D CAD retrieval often
fall short of meeting the structural precision required for engineering-grade drawings.

We propose a cross-modal retrieval framework that aligns vector-based 2D DXF
(Drawing Exchange Format) views with 3D CAD models using contrastive learning.
Our architecture integrates a Graphormer-based encoder for 2D input and a PointNet-
based encoder for 3D CAD models. We introduce a novel proximity-based spatial
encoding to enhance structural precision and robustness across varying view config-
urations. Using the filtered subset (~283K) of the newly developed large-scale dataset
OrthoCAD-322K, extensive ablation and comparison studies demonstrate the robust-
ness and generalization of the model in different input conditions and architectures.
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1. Introduction

Computer-Aided Design (CAD) systems play a fundamen-
tal role in engineering, with applications that span mechanical,
aerospace, automotive, and architectural domains. Historically, @
engineering workflows have relied on 2D orthographic projec-
tions, such as front, top, and side views, for tasks that include
manufacturing, technical documentation, and communication.
These projections are commonly stored as DXF files (Drawing
Exchange Format), a vector-based CAD data format that facil-
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itates interoperability across design platforms. Despite earlier
expectations that solid modeling systems would replace tradi-
tional drafting systems, 2D CAD applications remained domi-
nant even into the mid-2000s [1]. Before the widespread adop-
tion of 3D modeling tools, early CAD systems primarily pro-
duced 2D drawing DXF files, resulting in extensive repositories
of legacy engineering data.
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Fig. 1. Retrieval of 3D CAD model (BRep) using orthographic (DXF)
query.

A significant proportion of these drawing files lack corre-
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Table 1. Comparative analysis of existing 2D-3D CAD datasets in terms of sample size, CAD model types, 2D view formats, view configurations, and sup-
ported geometric primitives. Our proposed OrthoCAD-322K dataset offers significantly greater scale, standardization, and support for full orthographic
view projection compared to prior datasets, including Automatic 3D CAD Reconstruction [2], CAD2Program [3]], PlankAssembly [4], RL-Based CAD
Reconstruction [3], Photo2CAD [6], SPARE3D [7], and Text2CAD [8].

Automatic 3D CAD2P-

Plank- RL-Based CAD

Aspect CAD Reconst. ROGRAM Assembly  Reconstruction AR AR fexeel
Total 2.9K 368K 26.7K 68.9K Not specified ~ 21.5K 100K 322K
Samples
CAD Model B-Rep 3D customized Cabinet B-Rep CSG-based B-Rep and B-Rep B-Rep
Type cabinet models  furniture CSG-based
2D View File | Vectorized Rasterized Vectorized Vectorized Photos Vectorized Vectorized Vectorized (DXF),
Format (SVG) (SVG) (SVG) (PDF, DXF, and (SVG) and (SVG) and Rasterized and
scanned Rasterized Rasterized SolidWorks Native (SLDDRW)
images)
Views Front, Front, Front, Front, Front, Isometric + Isometric + Isometric +
Provided Bottom, Side, Top, Bottom, Top, Front, Front, Front, Back
Left Top, Side Left Side Top, Top, Top, Bottom,
Section views Right Side Left, Right +
Projected views for each
Orthographic View
Primitive Solid Mechanical 373 cabinet Axis-aligned  General Simple Solid General General
Types parts primitives cuboids mechanical Geometric Mechanical mechanical mechanical
(planks) primitives Primitives parts components components
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sponding 3D models [6] due to the limitations of contempo-
rary CAD tools and the absence of formalized 3D modeling
practices during earlier design stages. This lack of 3D geome-
try presents several challenges: (1) manual reconstruction from
drawing files is time-consuming and error-prone [9], often re-
quiring expert interpretation; (2) the absence of 3D models lim-
its the use of modern engineering tools such as finite element
analysis (FEA) [1Q], digital twin simulation, and computer-
aided manufacturing (CAM); and (3) design reuse is hindered,
complicating integration into contemporary Product Lifecycle
Management (PLM) systems.

Although 3D reconstruction from 2D orthographic views has
been extensively explored, the majority of existing methods re-
main rule-based or heuristic. Several approaches [9] typically
assume complete and clean input, and they often struggle with
complex geometric features such as splines [2], nested loops,
and topological ambiguities. Moreover, they are highly sen-
sitive to real-world noise. In practical scenarios, engineering
drawings frequently exhibit inconsistent view configurations
and missing geometric entities (e.g., lines, arcs, splines).

To address these challenges, recent research has introduced
deep learning-based methods for reconstructing 3D models
from 2D orthographic views. However, existing deep learn-
ing approaches often target narrow applications such as cabinet
or furniture design [3, 4]]. These methods often fail to handle
essential drawing elements such as spline curves [11]] and typi-
cally output unstructured point clouds rather than editable CAD
models. Moreover, some are limited to primitive shapes [6] or
support only basic modeling operations such as extrusion [3].

Furthermore, many of these methods are trained on propri-
etary [3]] or narrowly spanning datasets that are often limited
in geometric diversity, complexity, or scale. As summarized in
Table [I] the existing datasets vary significantly in fidelity and
structural completeness, restricting the development of scal-
able and generalizable 2D to 3D learning systems. Addition-
ally, while most prior work focuses on direct 3D reconstruction,
the alternative task of cross-modal retrieval, retrieving a struc-
turally relevant 3D CAD model from one or more orthographic

views, remains comparatively underexplored. To address this
gap, we introduce OrthoCAD-322K the first large-scale dataset
with standardized orthographic and isometric views for 322,000
publicly available CAD models in both DXF and raster formats.

Retrieving 3D models from 2D orthographic views presents
its unique set of challenges. These 2D views, while geometri-
cally precise, lack depth cues, are susceptible to viewpoint de-
pendency, and often exhibit hidden line ambiguities [12} [13].
Critical engineering features such as holes, ribs, fillets, and
chamfers may be partially or fully hidden in individual projec-
tions, requiring multiview synthesis for accurate interpretation.

In this work, we address the problem of retrieving 3D CAD
models from a variable number of orthographic views stored in
DXEF files, which may be incomplete or contain partially miss-
ing geometric information (Fig. [I). We propose a deep learn-
ing framework that bridges the modality gap between 2D DXF
drawings and 3D geometry by aligning them in a shared embed-
ding space. Our method employs cross-modal contrastive learn-
ing, enabling robust retrieval. A key enabler of our approach is
the use of vector-based DXF files, which represent lines, arcs,
and splines with high fidelity and support the extraction of ge-
ometric and topological features [14]. Recent work shows that
vector-based graph attention networks outperform raster-based
methods in segmenting complex technical drawings [13].

To encode 2D geometry, we adapt the Graphormer [[16] ar-
chitecture by introducing a novel proximity-based spatial en-
coding specifically designed for CAD DXF views. This strat-
egy connects nodes based on their spatial closeness, enabling
efficient capture of local geometric relationships while avoid-
ing the high computational cost of shortest-path calculations in
dense graphs. For the 3D modality, we sample CAD surfaces
into point clouds and project them onto the faces of an Oriented
Bounding Box (OBB), which are then processed by a Point-
Net encoder. The resulting 3D features are jointly aligned
with 2D view features in a shared embedding space. Our ap-
proach achieves strong retrieval performance, reaching 94.51%
top-1 accuracy with three orthographic views (front, top and
right), and remains robust even under incomplete input condi-
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tions.

This paper makes the following contributions:

« Developed the OrthoCAD-322K dataset comprising stan-
dardized orthographic and isometric views for 322,000 pub-
licly available BRep CAD models.

« Proposed a novel cross-modal retrieval framework that aligns
2D DXF orthographic views with 3D CAD models via con-
trastive learning.

« Designed a novel proximity-based spatial encoding for 2D
views within the Graphormer encoder, offering a more effi-
cient alternative to shortest-path encodings.

2. Related Work

The retrieval of 3D CAD models from 2D representa-
tions has evolved significantly over several decades, with var-
ious approaches that address the inherent challenges of cross-
modal matching and geometric understanding. Early CAD re-
trieval used global descriptors, structural encodings, and topol-
ogy graphs, but lacked fine-grained discrimination, leading to
learning-based methods [18]. Recent work has also explored
structured formats like STEP for both classification and re-
trieval tasks, utilizing Graph Neural Networks to learn from the
format’s rich topological and semantic data [19]].

2.1. View Mapping and Multiview Fusion Techniques

Various techniques have addressed the 2D-3D modality gap
through view mapping and multiview reasoning, including
methods for cross-domain alignment, multiview projection with
canonical viewpoints, and feature aggregation strategies using
CNNS, graph networks and attention mechanisms [[18]. Other
approaches utilize graph neural networks [20] and multilayer
perceptrons [21] to jointly encode multiview structure. Al-
though effective, most methods target rasterized renderings or
sketch inputs and often lack support for the geometric fidelity
and symbolic structure required in engineering grade CAD ap-
plications [18]].

2.2. Sketch-Based 3D CAD Retrieval

Retrieval methods based on sketches of orthographic views
has been a prominent approach to bridge 2D and 3D represen-
tations. Liu et al. [22]] introduced a user-adaptive sketch-based
CAD retrieval system using statistical modeling of individual
drawing habits. Pu and Ramani [23]] developed a 2D sketch-
based interface that requires users to draw three orthographic
views for reliable retrieval. Wang et al. [24] used a hybrid ap-
proach combining geometric outlines and skeletal topologies.

To address inaccuracies in query sketches, SketchClean-
Net [25] was introduced as a learning-based approach to im-
prove retrieval performance by denoising and correcting over-
drawn or incomplete sketches. Building on this, SketchClean-
GAN [26] used adversarial learning to further refine or com-
plete defective sketches, showing improved robustness in large-
scale retrieval scenarios. These methods leverage the CADS-
ketchNet dataset [27], which includes annotated and synthetic
hand-drawn sketches for engineering components.

Other approaches such as Wang and Zhou [28]] have em-
ployed convolutional neural networks and contrastive learning
to create joint embeddings between sketches and 2D renderings

of 3D shapes for zero-shot retrieval. Su et al. [29] and Qi et
al. [30] extended this paradigm with multiview CNNs for 3D
shape recognition.

2.3. Datasets for 2D to 3D CAD Mapping

Existing datasets for 2D to 3D CAD reconstruction vary in
scale, geometric diversity, and modeling fidelity. As shown
in Table [T] datasets such as SPARE3D [7]] contain limited col-
lections of synthetic CAD and CSG models that lack real-
world complexity. The Automatic 3D CAD Reconstruction
dataset [2]], derived from Fusion360, excludes B-spline surfaces
and therefore lacks complex freeform geometries.

Domain-specific datasets like PlankAssembly [4] and
CAD2Program [3] focus solely on cabinet furniture, which re-
stricts their applicability to broader CAD tasks. Plank Assembly
[4] is further constrained to axis-aligned cuboids as its primary
primitive type, excluding curved geometries.

The reinforcement learning framework in [3] is trained on
a dataset of loop-path pairs extracted from 2D orthographic
drawings, enabling parametric CAD reconstruction primarily
through extrusion operations. GaussianCAD [11] provides a
dataset focused on 3D Gaussian Splatting for CAD reconstruc-
tion from three orthographic views. A notable recent contri-
bution, Text2CAD [8] introduces isometric and orthographic
(front, top, side) views as intermediates for text-to-CAD gen-
eration across a dataset of 100,000 models. Benchmark BRep
datasets such as ABC [31], DeepCAD [32]], and Fusion360 [33]
provide rich parametric CAD models with high geometric fi-
delity. However, they lack associated 2D orthographic views.

3. Overview of the Proposed Approach

As illustrated in Fig. [2] this work presents a cross-modal re-
trieval framework that matches 2D orthographic DXF queries
to 3D CAD models. The system operates directly on structured
vector-based views (DXF) and employs a dual encoder archi-
tecture trained with contrastive learning.

To capture structural relationships, we introduce a novel
proximity-based spatial encoding. This connects entities based
on geometric closeness, allowing the model to learn spatial con-
text and view alignment without relying on computationally ex-
pensive shortest-path calculations. This encoding is embedded
within a Graphormer based encoder that models global interac-
tions across views.

In parallel, 3D CAD models are converted from STEP files
to surface-sampled point clouds. These are projected onto
six canonical planes and encoded using a PointNet [17]-based
network. The 2D and 3D encoders are trained jointly with
contrastive loss, bringing matched 2D and 3D representations
closer in a shared embedding space.

The key novelty of our approach lies in aligning these hetero-
geneous modalities, vectorized 2D views, and 3D point clouds,
within a shared embedding space. By leveraging vector geome-
try and spatially-aware encoding, the framework achieves high
retrieval accuracy (94.51% top-1 with three views: front, top
and right) and maintains robustness under partial or degraded
input, making it well suited for real-world industrial drawings.
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Fig. 2. Overview of the proposed Cross-Modal Retrieval Framework from 2D Orthographic views to 3D CAD Models.

4. Data Generation and preprocessing

Our data generation process implements a pipeline for trans-
forming CAD models (STEP) into 2D standardized represen-
tation format. We integrate three CAD model repositories as
source data. Fusion360 [34, [33], DeepCAD [32], and CAD-
Parser [35]. Image-based hashing techniques are used for du-
plicate elimination by capturing screenshots of 3D models from
multiple viewpoints.

4.1. Orthographic View Generation

We implemented an automated pipeline to generate standard-
ized 2D views from 3D STEP models using SolidWorks Task
Scheduler. Each CAD model was converted to the SolidWorks
native format (.sldprt) and rendered into one isometric and
six orthographic views (front, back, top, bottom, left, right)
based on a third-angle projection standard. A predefined draw-
ing template ensured consistent layout and projection parame-
ters across all samples.

The resulting drawings (.slddrw) were exported in both
DXF (vector) and raster formats for downstream processing.
Fig. 3| summarizes the overall view generation and file conver-
sion workflow.

4.1.1. Data Cleaning and Generation Infrastructure

To further improve the quality of the dataset, a lightweight
graphical user interface (GUI) was developed to support man-
ual inspection. A group of senior mechanical engineering un-
dergraduates reviewed the dataset and identified two recurring
issues: (i) Views collapsing into lines or points due to non-
volumetric models and (ii) scaling errors where projections ex-
tended beyond drawing sheet boundaries. A total of 7.4K views
affected by issue (i) were excluded from the dataset. For issue
(i), instead of discarding the affected BRep models (1.3K in
total), we refined the generation pipeline to apply uniform scal-
ing, normalizing BRep into a consistent spatial extent prior to
view generation.

Top Retrieved 3D
CAD Model
Fusion360 .drwdot template DXF DXF
DeepCAD (1 isometric + 6 Conversion Files
CADParser

orthographic views) l—r

Data SolidWorks's
Filtering| Native

Viex-/v
@ ™ Format [~ @ = Dr;;’i’é“g
1 (sldprt) t (.SLDDRW)
S v S vi

Image
i ?

Fusion360

DeepCAD
CADParser

Point Projection
Cloud on Bounding | ——{ Point
Generation Box Faces

Task Scheduler m SolidWorks 2019

Fig. 3. Framework for Multimodal CAD data generation.

The complete dataset was generated over a span of three
months for the initial full run using 12 parallel instances of
SolidWorks with shared storage. This was followed by an ad-
ditional two-week post-processing phase to handle failed or
restarted cases. In total, DXF and rasterized views were created
for 322,000 BRep CAD models. As illustrated in Fig. [} the re-
sulting OrthoCAD-322K dataset offers rich geometric diversity,
with each sample comprising paired 2D views and correspond-
ing 3D models.

4.2. DXF Preprocessing

Preprocessing begins by parsing DXF files to extract geomet-
ric entities (lines, arcs, circles, splines, polylines, Iwpolylines (
lightweight polyline)) across six canonical orthographic views,
formally denoted as v; € V = {v,...,vs}, where vy = front,
v = back, v, = left, v3 = right, v4 = top, and vs = bottom. Our
framework currently supports only geometric entities in DXF
files; annotations such as dimensions, tolerances, or symbols
must be removed through preprocessing.
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\IsometriC} Six Orthographic Views (front, right, left, top, bottom,
back)

Model | View

Fig. 4. Sample from the Multimodal CAD Dataset comprising CAD models
(BRep), isometric view, and six standard orthographic views (front, back,
left, right, top, bottom), provided in both DXF (vector) and rasterized im-
age formats for each view.

To ensure computational feasibility and comply with the
constraints of the Graphormer encoder, we filtered out DXF
samples in which any single view among the six orthographic
projections contained more than 100 geometric entities. This
reduced the dataset from 322,000 to ~283,000 CAD models
(= 12.11% excluded). This filtered subset of ~283,000 models
was used for all retrieval training and evaluation experiments
reported in this work.

4.2.1. Geometric Entity Sampling Methodology

Adaptive sampling is an adaptive point-allocation strategy
that converts each geometric entity into a fixed-size point set
by allocating sample points according to local geometric impor-
tance, concentrating them near endpoints and high-curvature re-
gions to improve shape-representation accuracy (see Fig.[5] A).
This method enhances shape representation compared to uni-
form sampling, while keeping the number of sample points per
entity fixed.

Each geometric entity is sampled into 100 points adaptively.
Type-specific strategies are used to preserve the overall shape.
For a given entity e, the resulting set of sampled points is de-
fined as P, = {p1, p2, ..., pioo} € R2.

The Sampling methodology varies with geometric entity type:
« Lines are discretized using adaptive cosine-based interpola-
tion that strategically biases point distribution toward end-
points:
1= 05(1 - COS(7Ti/99)), pi = (1 - ti)pstart + tipend (1)
« Arcs undergo adaptive angular interpolation with similar end-
point emphasis:
1 — cos(mi/99)

0; =05+, —06)- )

pi = ¢ +r(cos 6;,sin 6;)
2
« Circles utilize uniform angular sampling. 8; = 27i/100
« Polylines and lwpolylines are sampled using a combination of
straight and curved segments to capture their overall shape.
« Splines are sampled adaptively to capture geometric detail,
concentrating points in high-curvature regionsﬂ [36].

1 @)y )=y (" ()l
@y )72
weight w(u) = k(u)*> guiding point selection along the B-spline curve y(u).

ICurvature is computed as «(u) = , with a sampling

4.2.2. Wireframe Reconstruction Process

The 2D points sampled from each view are lifted into 3D
using view-dependent transformation functions. If view labels
are missing, they can be inferred using geometric heuristics.
The view with the largest projection area and most visible fea-
tures is typically identified as the front view. Other views are
matched by comparing shared dimensions, such as height or
width, with the identified front. For each view v; € V, a trans-
formation T; : R> — R3 maps the 2D coordinates to their 3D
positions, as shown in Fig.[5 B:

(x,0,y) ifv; € {front, back},
Ti(p) =4(0,x,y) ifv; € {left, right}, 3)
(x,¥,0) if v; € {top, bottom},

Here, T; map the 2D points of view v; € V = {v,...
their corresponding 3D coordinates.

Following the transformation, the 3D entities of all views are
merged to construct a unified 3D wireframe graph G = (N, E),
where each node n € N corresponds to a sampled entity and
encodes a feature vector:

fn = [0y, 0¢, Vi, vec(P,)] (4)

,Vs} to

here:
A {0, 1}® is a one-hot encoding of the view type,

o0, €10,1}°
« 0, € {0, 1} is a one-hot encoding of the entity type,

o v € {0, 1} is the visibility flag vector representing occlusion

status,

« vec(P,) € R3Y is the flattened sampled point cloud.

The visibility vector v, is represented using a 4D one-hot en-
coding, with [0.0, 1.0,0.0,0.0] indicating visible entities and
[0.0,0.0,0.0, 1.0] indicating hidden entities. The 4D format is
designed to ensure that visibility features contribute meaning-
fully during training, despite the presence of 300 geometric fea-
tures. This helps the model attend to visibility cues effectively.

Edges are formed between pairs of nodes based on spatial
proximity, and each edge ¢;; € E is assigned attributes a;; (edge
attributes) as: d.

ajj = l—di,d[j,C[,Cj (5)
max
where d;; is the Euclidean distance between the centers ¢; and
c;jof entities i and j, and dp.x is the maximum pairwise distance
observed used for normalization.

To support stable learning, the graph is normalized. All 3D
points are shifted so the graph is centered at the origin. It is
then scaled so its largest dimension is one unit. This makes the
graph scale-invariant and consistent across samples. The final
graph is saved in PyTorch Geometric format (. pt).

4.3. Data preprocessing for STEP file labels

Each 3D CAD model is first converted from STEP format to
a triangulated mesh (OBJ) representation. To obtain the sur-
face point cloud from each mesh, we use a deterministic, area-
weighted sampling strategy. Specifically, points are sampled
over triangle surfaces in proportion to their area using barycen-
tric interpolation with a fixed seed. This prioritizes sampling
in curved or highly tessellated regions, such as cylindrical sur-
faces, while avoiding undersampling due to uniform spatial al-
location. The approach ensures reproducibility and consistent
point cloud sizes while maintaining geometric fidelity.
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Uniform vs Adaptive Sampling i Views with Points Sampled from DXF } Step to Projected Point Cloud
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Fig. 5. Fig. A: Uniform vs Adaptive Sampling. Fig. B: Views with Points Sampled from DXF. The figure illustrates the transformation of standard DXF
orthographic views into a unified 3D wireframe through adaptive sampling. Fig. C: STEP to Point Cloud. The CAD model is converted into a surface-

sampled point cloud and projected for alignment in a shared embedding space.

To generate the projected point cloud, we first compute an
oriented bounding box (OBB) for each CAD model. Unlike an
axis-aligned bounding box, the OBB aligns with the object’s lo-
cal coordinate system, preserving its intrinsic orientation. The
minimum and maximum extents along the local axes define the
bounding volume. Each sampled surface point is then orthog-
onally projected onto the six faces of the OBB. This results in
a structured 3D point cloud that captures per-face projections
of the object’s geometry. Fig. [5] C illustrates this conversion
pipeline from STEP files to projected point clouds.

The OBB is first centered by translating it to the origin, and
then normalized by uniformly scaling it such that its longest di-
mension equals one. This effectively fits the geometry within a
unit cube while preserving the aspect ratio and intrinsic orien-
tation of the projections. While certain axes may not span the
full [-0.5, 0.5] range, this normalization ensures consistent and
scale-invariant representation across the dataset.

5. Network Architecture
5.1. Query Encoder

We adapted Graphormer [16] as the encoder for 2D ortho-
graphic views due to its ability to model global structural re-
lationships. The encoder operates on fully connected graphs
constructed from geometric entities extracted via DXF prepro-
cessing (Section [4.2), with node features defined in Eq. 4 and
edge attributes encoding spatial proximity.

Similarly to the original Graphormer [16], we incorporate the
centrality encoding to capture local structural roles. Each node
is augmented with degree-based embeddings derived from its
in-degree and out-degree.

5.1.1. Geometric and Visibility-Aware Feature Encoding
To account for hidden entities, we introduce a dedicated vis-
ibility encoding mechanism. Each entity is annotated with a

4-dimensional binary visibility vector v, representing its oc-
clusion status in orthographic views. This vector is projected
into a learned latent space via a linear transformation ¢yis(v;)
and concatenated with the geometric features, forming part of
a visibility-aware encoding pipeline (see Fig.[6) that integrates
view, entity, and geometric attributes.

(oo e e T T [0 ] O oo
)

Ml\;?r?s [:Is] [s.-l12] [12:16] Node3
[:6] | [6:12] [12:16] Node?
[:6] | [6:12] [12:16] Node!

A
nx[:6] nx[6:12]| nx[12:16] | | | I | | | | | | | | | | | n x Nodes
A
Node Attr Masking Mechanism
nx|[:6] nx[6:12]| nx[12:28] | n x [28:328] n x Nodes
\ A 1
\ Visibility Encoding
\ I}
nx[:6] |nx[6:12]] nx[12:16]| nx [16:316] | n x Nodes
EREEREE R
S k=i E =i é = 4% E\'. é
> ;\::: »

Fig. 6. Node Attribute Processing Pipeline: Encoding View, Entity, Visibil-
ity, and Sampled Geometry Features.

To ensure consistent input dimensionality across all geomet-
ric entities, we sample 100 points per entity, regardless of com-
plexity. While this guarantees fixed-size input, it can introduce
redundancy for simple shapes such as short lines or arcs. To
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address this redundancy, we employ a feature-masking mech-
anism that selectively suppresses less informative points while
preserving critical geometric details.

We apply selective masking to the last 300 dimensions of
each node’s feature vector, representing 100 sampled (x,y, z)
points. These are reshaped to R™!%3 and attention scores are
computed via a learnable projection:

a = softmax(X(_3p0,W), where W € R**!
X(=300) = X(=300) @ 1[@ = p(a,dim = 1)] (6)

Only 3D points with attention above the per-node mean are re-
tained, and the masked features are flattened back to R"*3% for
downstream use.

5.1.2. Proximity-Based Spatial Encoding

While the original Graphormer architecture models struc-
tural relationships using discrete shortest-path distances be-
tween nodes, our fully connected graph requires a more ge-
ometrically intuitive formulation. We take advantage of the
proximity-based spatial encoding defined in Eq. [5] where the
notion of proximity is explicitly encoded via edge attributes re-
flecting normalized Euclidean closeness between entity centers.

This approach ensures that spatially closer entities are as-
signed higher attention scores during self-attention, promoting
local structure preservation while still allowing for global con-
text aggregation.

The spatial bias term b;; is defined as:

bij =B - wij @)

where 8 is a learnable scalar parameter, and w;; is the
proximity-based weight between nodes i and j derived from the
normalized Euclidean closeness as defined in Eq.[3]

Wireframe Proximity Score Matrix

| ni Nz nz N4 ns ng ny

\‘ n; . 0.2 [05)[05 . 04 04

i
n» 0.2. 05 05 02 00 0.0
\ nz (05|05 il 04 [05 02 o.

‘ i
‘ ny [0505 o4 [l 05| 02 03

| ns [l o2 [05|/os ] 04 04
| ng 04 00 02 o2 o4 [ [6R
n; 04 0o o1 o3 o4 67l

]

Graph

Fig. 7. Illustration of proximity-based spatial encoding using sample back
and bottom views. Nodes represent geometric entities; edge weights corre-
spond to normalized proximity scores used to compute the bias matrix.

Fig. [7| illustrates this process using back and bottom ortho-
graphic views. The parsed geometric entities are converted to

fully connected graph nodes, with edge weights derived from
proximity scores. The resulting wireframe graph forms a prox-
imity score matrix encoding spatial affinities between node
pairs.

| ] I [1:2] I [2:5]
t t !
| | |
[1:] [1:2] [2:5]

Edge Matrix

1] [1:2] [2:5]

[:1] [1:2] [2:5]

Proximity Euclidian

Number Distance Start point, End Point

Fig. 8. Edge Attribute Matrix Construction based on Entity Proximity and
Spatial Relationships.

5.1.3. Edge Encoding

We adopt a straightforward approach to edge encoding using
basic geometric cues, as illustrated in Fig. [8 Edge biases c;;
are defined based on normalized proximity and relative spatial
positions between entity centers, as described in Eq.[3]

The edge-aware bias term c¢;; is computed simply as:
Cij = dij* WE (3)

where a;; € R is the complete edge attribute vector between
nodes i and j that encodes proximity and spatial relationships,
and wg € R% is a learnable weight vector associated with edge
features.
5.1.4. Graphormer Layers with Spatial and Edge Bias

The core of the network consists of a stack of L Graphormer
encoder layers. Each layer applies multi-head self-attention,

enhanced with both spatial and edge-based biases:
T

Tk
Attention(i, j) = q’—ﬁ’ Ny— )
.“f},-‘ezreWth is the query vector of node i,
o kj = Wgh; is the key vector of node j,
« d is the dimensionality of the query and key vectors.

Here, Wy and Wi € R4 are learned projection matrices,
and h;, h; € R? are the input feature embeddings of nodes i and
J» respectively. The term b;; denotes the spatial bias (Eq. [7),
while ¢;; denotes the edge-aware bias (Eq. @ Each attention
block is followed by a position-wise feedforward network with
residual connections and layer normalization, consistent with
the original Transformer architecture.

5.1.5. Graph-Level Representation and Pooling

To obtain a global graph embedding Az € R%, we ap-

ply the mean pooling to the node representations in the final

h = hl‘l ] O

dout

where h,, denotes the final hidden representation of node n, and
|N| is the total number of nodes in the graph.
5.2. Label Encoder

To encode 3D CAD models, we employ PointNet [17] on
projected point clouds (Section {.3), producing shape-aware
embeddings. PointNet is chosen for its permutation invari-
ance, robustness to noise, and computational efficiency com-
pared to volumetric or transformer-based alternatives. In our
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Table 2. Training implementation details and encoder configurations for
the dual-encoder contrastive learning framework.

Parameter Query Encoder  Label Encoder
Backbone Graphormer [16] PointNet [[17]
#Layers 4 3 MLP blocks
Hidden Dim d 256 1024 (pre-proj)
FFN Dim 512 512—-256 (MLP)
#Attention Heads 8 -

Head Dim 32 -

FFN Dropout 0.1 -
Attention Dropout 0.1 -
Pooling Type Mean Pooling Global Max
Output Embedding Dim 256 256
Feature Transform - Enabled

Shared Contrastive Learning Settings

Optimizer AdamW (8,=0.9, 3,=0.999)
Learning Rate le-4

Weight Decay le-5

Scheduler Cosine Annealing (Tmax = 100)
Batch Size 32

Epochs 100

Contrastive Loss Temp. (1) 0.07

Feature Trans. Reg. Weight 0.001 (Pointnet only)
Implementation Framework PyTorch Lightning 2.0

Hardware used

RTX 4080, Intel i7-12700

ablation study (Section[J), it outperformed Point Cloud Trans-
former [37] in both retrieval accuracy and training stability.

The resulting 1024-dimensional global descriptor is passed
through a two-layer MLP comprising linear layers with 512
and d,; units, batch normalization, and ReLLU activations. This
yields the final embedding hp € R%u, aligned with the query
encoder’s latent space.

6. Training Methodology, Loss Function, and Implementa-
tion Details

Our framework uses the dual encoder setup in Section [3
where DXF wireframes and 3D point clouds are mapped to a
shared 256-dimensional space. The overall training procedure,
including feature extraction, similarity computation, and con-
trastive optimization, is summarized in Algorithm [I] Training
implementation details and model configurations for the query
encoder (Graphormer) and label encoder (PointNet) are pro-
vided in Table [2| The dataset of ~283,000 filtered CAD mod-
els is randomly split into 70% for training (~198,100 samples),
15% for validation (~42,450 samples), and 15% for testing
(~42,450 samples).

6.1. Contrastive Learning Objective

Both encoders are trained jointly using an InfoNCE con-
trastive loss formulation [38]]:

exp s(eg, e )/T)

Leontrastive = N Z 1 (11

] exp (s(eg,e,,)/‘r)

Algorithm 1: Training Strategy for Cross-Modal Re-
trieval
Input: Paired dataset D = {(G, P)}; learning rate n;
temperature 7; regularization weight 4
Qutput: Trained encoders fg and fp
Initialize encoders fg, fp with parameters 6, 6p
foreach epoch do
foreach batch {(Gp,, P,)} do

J Tk; .
Attn(i, j) « L5 +Bw;j + a;; - Wg // Node attention

Vd
2¢ < fo(Gp) // Encode DXF graph
zp, T «— fp(Py) // Encode point cloud
26 « Zq/||Z<_;||, zp < zp/llzpll // Normalize
Lj <2 20/t // Similarity logits

L.s < CrossEntropy(L, targets) // Contrastive loss
L < SITTT - 1% // Transform regularizer
Llolal — Lcls +4- Lreg // Total loss
O < 0 — TIVH(,- Liotal
Op < 6p — UVHmeml

where s(-,-) denotes cosine similarity, e; and e; are the em-
beddings of the i sample from the graph and projection en-
coders respectively, 7 is a temperature parameter controlling the
distribution sharpness, and N is the batch size.

To further stabilize training and promote invariance in geo-
metric transformations, we incorporate a regularization term on
the feature transformation matrix, following the technique in-
troduced in PointNet [17]:

2
Lo = || - AAT|[, (12)
where A is the learned transformation matrix and || - ||r de-

notes the Frobenius norm. This term encourages A being close
to orthogonal, thus preserving the geometric structure of point
cloud features and preventing degenerate mappings.

The final loss function combines these components with a

Welghtlng factor: -E = Lconlraslive + /lLreg (13)

We adopt 4 = 0.001 in alignment with the empirically val-
idated configuration proposed in PointNet [17], where it was
shown to improve training stability and generalization.

7. Experimental Results and Analysis
7.1. Experimental Setup

We trained two categories of models using consistent hy-
perparameter settings to ensure fair comparison, with the ex-
ception of Model M6, which used half the batch size due to
computational constraints. As the OrthoCAD-322K dataset
does not contain class labels, retrieval performance was eval-
uated using three standard metrics: Top-1 accuracy, Top-5 ac-
curacy, and Mean Reciprocal Rank (MRR). All experiments
were conducted on the filtered subset of ~283K models from
OrthoCAD-322K.

« Fixed view models (M1-M6): Each model was trained with
a fixed number of orthographic views, incrementally added
in canonical order: front, top, right, left, back, and bottom.
For example, the 1 view (M1) setting corresponds only to
the front view, while the 6 view (M6) setting includes all six
standard projections.
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Fig. 9. Top-1 retrieval accuracy under varying orthographic view configurations. Left: Fixed-view models (M1-M6) show reduced accuracy with limited
views (e.g., M1). Right: Mixed-view models (M7-M9) demonstrate greater robustness. For example M7, trained with 50% one-view and 50% two-view
samples. Training with >3 views (e.g., M3-M4, M8) consistently yields higher max and average accuracy across test sets (T1-T6).

Table 3. Top-1 retrieval accuracy (%) across models (M1-M9) and test sets
(T1-T6 and T1’). Columns T1’ and 7”; report the mean accuracy (u) with
standard deviation (o). The T’; column corresponds to the randomized test
set used for M1-M6 (e.g., T2’ for M2), and the best randomized result for
M7-M9.

MT T1 TV (uxo) T2 T3 T4 T5 T6 T’;(uxo0)
M1 9295 79.45+2.06 49.48 44.23 41.63 33.70 31.32 79.45+2.06
M2 76.80 69.34+1.24 94.02 93.21 85.66 83.49 80.83 90.70 = 0.71
M3 68.89 61.61+1.92 9297 94.51 93.74 93.10 91.89 91.89 +0.55
M4 38.57 34.04+£2.32 92.00 92.96 94.28 93.83 93.40 89.93 +0.67
M5 971 537+243 80.62 91.09 92.56 94.10 93.71 89.83 +0.72
M6 29.13 23.61 +£1.12 79.47 87.63 89.17 91.98 94.01 89.68 +0.63
M7 9296 83.10+1.18 93.52 91.86 79.36 72.67 66.78 91.34 +0.66
M8 93.17 84.52+1.09 94.05 94.05 93.32 91.75 90.07 91.51 +0.60
M9 9231 83.09+1.11 94.02 94.07 94.10 92.00 89.34 91.07 £0.58

o M1’: A variant of M1 trained on single orthographic views,
where the single view is randomly selected from any of the
six standard directions: front, right, back, left, top, or bottom.

o Mixed view models (M7-M9): Each model was trained on
a balanced dataset comprising equal proportions of samples
with different numbers of orthographic views:

o M7: equally sampled from 1 and 2 views
o MB&: equally sampled from 1, 2, and 3 views
o M9: equally sampled from 1, 2, 3, and 4 views

« Fixed view test sets (T1-T6): Contain 1 to 6 orthographic
views in a predefined order, matching the view counts used
during training. (e.g., 73 = front, top, right).

o Random-view test sets (T1’-T6’) also contain 1 to 6 views,
but the views are selected in random order for each sample
(e.g., a T3’ sample might include the right, bottom, and back
views). We generated five randomized replicates for each of
the six randomized view sets (T1°-T6"), resulting in 5 X 6
diverse subsets.

We evaluated cross-generalization performance by testing
across all model-test set combinations (M1-M9 x T1-T6). For
the random-view sets (M1-M9 x T1’-T6’), we repeated testing
five times and report the mean + standard deviation in Table 3]

7.2. Critical Analysis of Cross-Modal Generalization Results
Table[3|reports the Top-1 retrieval accuracy across all combi-

nations of models and test sets, with performance trends visu-

alized in Fig. [0] Table [ presents the Top-5 accuracy and Mean

Table 4. Top-5 retrieval accuracy (%) and Mean Reciprocal Rank (MRR)
of models M1-M6, each evaluated on its best-performing input setting 7';
(e.g., M1 on T1, M2 on T2, etc.).

Metric M1 M2 M3 M4 M5 Mé
Accuracy (T;)  95.73 96.11 96.71 96.14 95.87 95.06
MRR (T;) 09482  0.9537 0.9567 0.9533 09501 0.9426

Reciprocal Rank (MRR) for the best-performing configurations
of models M1 through M6. Our cross-modal evaluation reveals
the following key findings:

o M3 - View Completeness: Model M3 achieved the highest
Top-1 accuracy (94.51%) on fixed three-view inputs (T3),
which include the front view and maintained strong perfor-
mance on randomized views ((91.89 = 0.55)% on T3’). It
also led in Top-5 accuracy (96.71%) and MRR (0.9567) on
T3, highlighting consistent top-ranked retrievals. This sug-
gests that three orthographic views represent an optimal bal-
ance between geometric completeness and computational ef-
ficiency. Given the inherent viewpoint symmetry in ortho-
graphic projections, adding more views (M5-M6) beyond
three tends to introduce redundant information without yield-
ing significant performance gains.

o Mixed-View Robustness: Mixed-view Models (M7-M9),
trained with a variable number of input views, exhib-
ited strong generalization compared to fixed view models
(M1-M6). Even when evaluated on the randomized single
view set (T1’), mixed-view models (M7-M9) consistently
outperformed all fixed-view counterparts (M1-M6), demon-
strating superior generalization and robustness to varying in-
put configurations.

o Stability under View Variations: Across five replicates for
each of the six test sets (T1’-T6’), models M2-M9 exhib-
ited a mean Top-1 accuracy drop of roughly 2%—4%, indi-
cating moderate sensitivity to input variation (see last col-
umn of Table[3). The low standard deviation (~0.5%-0.7%)
across models M2-M9 further confirms consistent general-
ization under varying view configurations. M1, in contrast,
shows a higher standard deviation of 2.06% on T1’.

o Bias in M1: Model M1, trained exclusively on front views,
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achieved 92.95% on T1 but dropped to (79.45 = 2.06)% on
T1’, indicating overfitting to the more detailed yet depth-
limited front view. In contrast, Model M1’, trained on single
views uniformly sampled from all standard directions (e.g.,
front, top, right), achieved a comparable score of (79.34 +
0.3)% on T1’. This suggests that M1’s strong performance
may be driven by dataset bias favoring visual richness of the
front view, rather than true view-invariant feature learning.

« View-Specific Gaps: This limitation persists beyond M1. As
shown in the T1 column of Table 3] models trained with mul-
tiple views (M2-M6) exhibit reduced retrieval accuracy on
front-view inputs. This gap likely arises from their predomi-
nant exposure to depth-rich projections during training, while
front views inherently lack explicit depth cues.

o Benefits of Mixed-View Training: The view-specific bias ob-
served in M1 and M2-M6, stemming from exclusive expo-
sure to either views lacking depth cues or depth-rich views,
was effectively addressed in Models M7-M9. Trained on
mixed views, these models exhibited notable improvements
in generalization. This underscores the importance of var-
ied viewpoint exposure in promoting view-invariant struc-
tural learning, a crucial step toward practical robustness.

o Limits of One-View Input: Despite overall improvements,
Models M7-M09 trained with varying numbers of views still
exhibited a residual drop in accuracy on T1’. This under-
scores the inherent challenge of recovering 3D structure from
single-view inputs that lack depth cues.

7.3. Qualitative Analysis of Retrieved Models

The qualitative results in Fig. [I0]are generated using Model
M3, evaluated on the test sets T1 through T4. The figure illus-
trates the effect of varying the number of query orthographic
views (V) on CAD retrieval. As V increases, retrieval accuracy
improves. With a single view (V = 1), retrievals are often im-
precise, returning structurally similar but incorrect models. In-
creasing to V = 2 and V = 3 leads to progressively more accu-
rate retrievals. Fig.[T0](highlighted within the dotted boundary)
also presents challenging cases, such as spring-like shapes and
thin parts with multiple holes, where retrieval struggles or fails
even with multiple views. These examples underscore the lim-
itations of orthographic projections in capturing fine geometric
details and occluded features.

7.4. Robustness to Partial Geometry, Geometric Perturbations,
and Viewpoint Deviations

To simulate scenarios with incomplete or corrupted vector
files, where some entities may be missing during parsing, we
evaluated the robustness of Model M3 by randomly removing
a fixed percentage of geometric entities from the query views.
The experiment was conducted at drop rates ranging from 10%
to 50%, using the T3 test set. As shown in Table |§] A, Model
M3 performed well even under these conditions, with accuracy
remaining high at 91.89% at a 30% drop rate and 86.96% at
50%, demonstrating its robustness to missing data.

Furthermore, to simulate minor geometric perturbations that
may be commonly introduced during design iterations, we aug-
mented the 3D models by adding one or two small protrusions,
such as cubes or cylinders, and used these modified versions as
retrieval targets. As indicated in Table [5| B, while M3 exhibits

robustness to small-scale deformations, its accuracy decreases
with larger protrusions, underscoring sensitivity to topological
inconsistencies.

To evaluate generalization under consistent viewpoint devia-
tions, we re-assessed model M3 on 10,000 CAD models by ap-
plying rigid-body rotations to the entire object along the X-axis
at increments of 5° up to 45°, while keeping the retrieval targets
unchanged. For each rotation, new orthographic view triplets
(Front, Top, Side) were rendered while preserving mutual or-
thogonality. While Top-1 accuracy showed a marked decline
with increasing rotation angles due to geometric distortions in
the DXF projections, Top-5 accuracy exhibited a more grad-
ual decrease, maintaining 64.79% at 45°. This suggests that the
model retains a degree of retrieval consistency under systematic
viewpoint shifts (Table[5]C).

Table S. Top-1 retrieval accuracy of Model M3 under three robustness sce-
narios: (i) partial geometry degradation due to entity drop, (ii) structural

mismatch induced by synthetic protrusions, and (iii) viewpoint deviations
via rotation.

A. Partial Geometry (Entity Drop)

Baseline 10 20 30 40 50
94.51 9422 9410  91.89 89.60 86.96

Entity Drop (%)
Top-1 Accuracy (%)

B. Structural Mismatch (Protrusion-Based)

7.5% 10% 15%
82.41 79.43  64.76

2x3%
81.53

2x5%
74.76

Protrusion type 5%
Top-1 Accuracy (%) 88.41

C. Viewpoint Deviation (Global Object Rotation Along X-Axis)

Rotation Angle (°) 0 5 10 20 30 45
Top-1 Accuracy (%) 91.75 80.37  68.75  49.47 40.99 36.44
Top-5 Accuracy (%) 97.98 96.96 9447  83.08 69.97 64.79

8. Comparison Study: Encoder Architectures for DXF-
Based Retrieval

To benchmark our approach, all state-of-the-art models were
trained and evaluated on our proposed dataset across modali-
ties, except for ViT- and MVCNN-based architectures, which
were fine-tuned on the proposed dataset using open-source pre-
trained weights (see Table |§[) In the 3D domain, PointNet out-
performed Point Cloud Transformer (PCT) [37]], which, despite
using global self-attention, saw accuracy drops (4.34% on test
set T3 (front, top and right), 6.75% on average) due to its lack
of spatial priors. PointNet’s architecture, attuned to spatial reg-
ularities, proved more effective for structured CAD data.

For 2D DXF vector inputs, while GCN and GAT could
encode relational structures, they lacked positional encoding.
GraphGPS [39] improved performance by combining local
message passing with global attention (91.68% on T3), but
the Graphormer variant surpassed all by capturing both spatial
proximity and structural context crucial for engineering views.

Raster-based models like MVCNN [40, 41] and Multi-
ViT [42] underperformed, with the best configuration (Multi-
ViT+Attn) reaching only 88.12% on T3, compared to
Graphormer’s 94.51%. This performance gap arises because
rasterization often obscures fine geometric and topological de-
tails, whereas DXF representations preserve vector-level preci-
sion critical for engineering-grade retrieval.

We implemented a cross-modal baseline using the Siamese
architecture from CADSketchNet [27]], which aligns 2D raster
sketches with rendered CAD views in a shared embedding
space. Although effective in bridging modalities, it achieved
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Fig. 10. Qualitative results of CAD model retrieval for orthographic view queries (V = number of query views), evaluated using model M3.

Table 6. Comparison of T3 accuracy/loss and MRR, with average accu-
racy/loss across views T1-T6. The fixed-view test set T3 consists of the
front, top, and right views. Bold values indicate the best-performing model.

Model T3 T3 MRR Avg T1-T6 Avg T1-Té6
Acc (%) Loss Acc (%) Loss

Ours 94.51 2.7009 0.9567 89.18 3.1673
GraphGPS 91.68]  3.23417 0.9548] 85.89] 3.98257
GAT 91.03] 3.6661T 0.9544] 85.59] 4.39817
PCT 90.17)  3.0818T 0.9345] 82.43] 3.39377
GCN 85.18]  3.0752T 0.9051] 68.09] 3.52857
Multi-ViT+Attn ~ 88.12]  3.54217 0.9416] 80.33] 4.32877
MVCNN-SA 86.67]  3.8825T 0.9102] 76.29] 4.10017
Multi-ViT 85.43]  5.9808T 0.8997] 76.43] 5.94307
MVCNN 84.03]  3.94927 0.8999] 74.32) 440217
CADSketchNet 58.93] - 0.8120] 48.01] -

lower accuracy (58.93% on T3), indicating that raster-only in-
puts may lack the geometric precision needed for CAD re-
trieval. Loss values are omitted from Table [] due to differing
loss formulations.

Overall, these results highlight that using vector-based en-
coders with spatial and structural information is key to achiev-
ing accurate CAD model retrieval.

9. Ablation Study

We conduct an ablation study to evaluate the contribution of
key architectural components in a model trained with three or-
thographic views (M3). We evaluate performance on T3 and
T1-T6, with Table[7] showing accuracy and loss drops for each
ablation. Our results highlight several key findings:

« Visibility Encoding and Node Masking: Removing either of
these components results in accuracy drops of up to 1.43%
(average across T1-T6), with a larger degradation of 2.67%
when both are removed, confirming their importance.

« Raw Point Cloud Representation: Bypassing projections
causes major performance loss, reflecting the challenge of
aligning unordered 3D points with structured 2D graphs.
Structured projections retain geometric priors crucial for
cross-modal correspondence.

« Loss Function: Replacing contrastive loss with triplet loss
results in the largest accuracy drop of 8.65% on T3 and

10.99% on average, emphasizing the effectiveness of con-
trastive learning for aligning 2D and 3D embeddings.

Table 7. Ablation Study: Change in Top-1 retrieval accuracy (%) and loss
of the M3 model on the 3-view test set (T3) and the average across T1-T6.

Configuration A Acc A Avg. Acc A Loss A Avg. Loss
No Visibility Encoding 0.92%] 1.23%] 0.58607T 0.93707
Without Node Masking 0.83%] 1.43%] 0.20227 0.46597
No Visibility Encoding+ 1.98%] 2.67%] 1.72997 2.09227
Without Node Masking

Raw Point Cloud (No Projection) 7.01%] 15.01%] 1.7356T 2.62247
Triplet Loss (Instead of Contrastive) 8.65%| 10.99%] 2.59147 3.01117

10. Conclusion and Future Work
We proposed a cross-modal retrieval framework to retrieve

3D CAD models from 2D orthographic DXF views, address-
ing the challenge of legacy data reuse in engineering design.
Key contributions include a dual encoder architecture that com-
bines Graphormer and PointNet, a novel proximity-based spa-
tial encoding strategy, and the newly developed OrthoCAD-
322K dataset. Our method achieves a top-1 retrieval accuracy of
94.51% on fixed three-view inputs (T3), which include the front
view and demonstrates strong generalization under incomplete
and variable input conditions. Extensive ablation and com-
parison studies support the effectiveness of our architectural
choices. All experiments were conducted on the filtered sub-
set of ~283K models from OrthoCAD-322K. Future work will
focus on supporting assembly retrieval, incorporating drawing
annotations, and adapting the framework to specialized indus-
tries such as aerospace and automotive involving sectional and
auxiliary views.
Author Note

During the preparation of this work the author(s) used Chat-
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