On the visibility locations for continuous curves

Abstract

The problem of determining visibility locations (VLs) bnside a domain bounded by a plar@i-continuous curve (without
vertices), such that entire domain is covered, is discuisstitis paper. The curved boundary has been used withoug lagiproxi-
mated into lines or polygons. Initially, a few observatioagarding the VLs for a curved boundary have been made. topgsed
that the set of VLs required to cover the domain be placed imamer that the VLs and the lines connecting them form a spgnni
tree. Along with other observations, an algorithm has beeriged which gives a near optimal number of VLs. The obtdine
number of VLs is then compared with a visibility disjoint sealled as witness points, to obtain a measure of the "nssirok
the number of VLs to the optimum. The experiments oredént curved shapes illustrate that the algorithm captheesptimal
solution for many shapes and near-optimal for most others.

Keywords: Curved boundary, Continuous curves, Visibility Locatip8siard placements, Sensor location, Splinegon, Covering
problem, Camera placement

1 1. Introduction

> The problem of identifying regions of visibility within a

s domain (or from outside of it) has been useful in many ap-
. plications such as mold design for manufacturing, inspecti

s of models, shortest path identi cation, placing guardsdver

s an art gallery, sensor location, robot motion planning étc.

7 the case of mold design, the problem is posed as “whether the
s model is a two-piece, given a set of viewing directions' [Al-

o ternatively, given a model, the problem is to identify opim

w parting directions that reduce the number of mold pieces8][2, Figure 1: Boundary guards [8] vs. guard at the interior falaa-shaped domain
u  Viewpoint selection that covers the entire object has beefyuards shown as dots).

1 used in inspection. Clearly, creating an optimal set of view

13 points (or visibility locations (VLs)) will then reduce tlowerall o ] o ] .

.« cost of inspection (see [4] for a detailed survey on thisgppgh *  Determining optimal visibility locations for a single cles
s the case of shortest path identi cation [5], the visibiligyaph * continuous curved boundary (i.e without explicit notiorvef-

s has been a very popular construction, which can be compuiteif€s), particularly when the locations can be interiotte do-
«» using tangents [6]. s Main has not been addressed, to the best of our knowledge. A

» Sensor location also depends on the visibility of a featu?%gonservative estimate on the number of VLs when the location
«» apart from several other factors [7]. Other applicatiordtid- “ €an be on the walls of the curved boundary has been provided

» ing security, computer graphics (hidden surface remowal) e N [8] using a visibility chart. The algorithm in [8] requisea
» also come under the realm of visibility region identi catio * S€t of candidates as input, from which either a set of VLs may

»» For further details on the applications, see [8]. . be obtained or the algorithm results in failure. To aid pradt

»  The problem of visibility locations has usually considere¢iSOlutions, they also discretize the visibility chart. Gtherks

. domain bound by a polygon (a closed shape with well-de né&dWhich discretize for pr.a<.:t|.c_al solutions mclude genesedi d!s-

s vertices and edges as straight lines which do not intergeepe « crete framework for visibility problems in [14] and geomietr
 at their vertices), at times with holes, typically solveddmyn- + Multi-covering [15].

27 putational geometers and termed as art-gallery problee (se ]

2 [9]) and occasionally polyhedra [10, 11]. However, the peab * Problem Statement, approach and the obtained results

20 Of VLs rarely considers complex objects such as curved ones. More often than not, in practice, VLs (hereafter, termed as
s Recently, this problem for curved polygons has been adeldess guards for ease and clarity of explanation) are required to be
a1 in[12, 13] by replacing straight edges with curves whicheire s: placed not just on the boundary but also interior to it. For ex
= ther piecewise convex or piecewise concave, but not a nextarample, for a star-shaped curved polygon, as opposed to three
s Of both. In the current available literature for curved maps, s guards on the boundary (Figure 1(a)), a single guard intésio

s vertices are well de ned. s« the domain can cover it (as in Figure 1(b)). In practice, itigo

(a) Three boundary guards (VLs).(b) One interior guard (VL).
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« De nition 2. A point on a curve is concave if its center of cur-
a1 vature and outward normal at that point are in the same direc-
« tion, otherwise the point is termed convex (S in Figure 2%a) i
s concave, whereas O in Figure 2(b) is convex).

« De nition 3. An internal tangent (denoted as IntT) is a line
s sSegment completely lying to the interimm the curve (no point

s Of the line segment lies exterior to the curve) which is a tantg

o t0 at least one point on the curve (e.g., the line segment AB in
s Figure 2(a) or AO in Figure 2(b)).

@

o De nition 4. The point at which an internal tangent touches
100 @ CUrve tangentially is called its silhouette point (hermctf

w1 denoted by S) [8]. S in Figure 2(a) is the silhouette pointef t
102 INtT AB.

Figure 2: (a) An_internal tangeﬁtB, and (b) its silhouette_and occlusion pointls03 De nition 5. If an internal tangent has another point Iying on
S andO respectively. (c) In ection point$ and!® and their IPT4O and!°0° . . . 2.
(d) The visibility regionV’ (G) of a guard shown in red color. s the curve (apart from its silhouette point), then such a pw@in
105 called an occlusion point (O in Figure 2(b)) [8], and is herce
16 forth denoted by O.
ss be useful if the guards are allowed to be placed intésiothe N ) . ) ) )
- domain (and not just on its boundary). Hence, given a pl’a;De n|t|on_6. A_n mter_nal tangent starting at an in ection point
s nar domain bounetlby a smooth (i.e. withouE? discontinu- *** IS called in ection point tangent (IPT). Its starting poiabin-
= ities), parametric, non-convex closed simply-connectewe * cides with its silhouette point (Figure 2(c)).

= C(f), this paper aims to nd the near-optimal number of guardspe nition 7. A point P2 D is considered visible to another
« that cover the entire domain. To the best of the knowledge Of)oint Q2 D, if for all points x2 PQ;x\D ° = ,i.e. no point

111

o the authors, this is perhaps the rst work aimed in this direg o, the line segment PQ lies completely exterior to the bognda

= tion. Vertices are not explicitly de ned in the curved bound, ofp  Grazing contactis allowed i.e. the line segment can touch
ss ary considered in this paper, and hence it isesent from the  ihe boundary (typically tangentially).

« curved domains considered in [12, 13]. Also, no discretiza-
e tion approach has been employed like in [8], though we use a For example, in the Figure 2(b), O is considered visible to
e rule-based approach like the one used in [16]. However, thé even though the line segment OA has a grazing contact at S.

e rules have been arrl\{ed upon _based on our observ_atlons. u-vnﬂfe nition 8. LetV (G) = fx j x 2 D and x is visible to @be
s approach presented is heuristic-based and greedy in ndture : . A ] .

. s the set of points forming the visibility region of the poin{tGe
« adds one guard at a time. Moreover, we employ a rst order

. approach 1o solve this problem, typically employed in hitd& red area in Figure 2(d) indicates the visibility region of @) set

» Markov models. It can also be noted that there can be many. CONSisting of points on or insidg(@ are termed as witness
»» measures to come up with a ‘good' guard from a candidate’s oints [16] if visibility regions in the set are painwise gint,
7 (as can be seen in [16]) and our approach is based on intézrznla?"sq”zwv @\V ()=

7 Laonugnedn;fyas it is related to the visibility in the case of a\/edr123 2.2. Observations on the visibility of a guard
75 .

«  We also have proposed an algorithm to compute “witn&ss The motivation for our observations comes from the fact
7 points', a technique introduced in [16], based on which the &° that,dunllke a pr?lygonal Fo_ulnd;rycédcontlr_]uousZurvedé)(_)und-

«» timality of the solution obtained has been conjectured toB&™Y 39‘5 rg)ot ave exp |((:j|ty ene ver:'Flches. guard 1 as-d_
» N0 worse than twice the actual optimal number of guards.irPYMe€ to ehrepre;(ér&te as 6]} p_OI_BFl_W ICA can sfee in gvgry i-
s practice, based on the experiments conducted, the propﬁ%@%cuon (ie. has a ange of visibility). A set of guards is

a1 approach returns the optimal solution for many of the testagaid to cover the domain if every point in the domain is visibl
o CUIVeS. 130 {0 some guard [9]. Also, a guard cannot see through the curved

1 boundary (i.e. the boundary is assumed to be opaque), and can
S 12 either lie on or interior to it. AnintT is assumed to have at
ss 2. Preliminaries 113 MOSt one silhouette point. The following proposititmiges are

Let the boundary of a domaid be bounded by a parametriléa crucial to develop an algorithm to determine the guards io-a d
84 - .

. . S . main bound by a curved boundaiy. the subsequent sections,
e closed curveC(t) withoutC? discontinuities. Let the exterior o * y 7 9

th be denoted My° 1:s When we draw an internal tangent from a point, we exclude the
= the curve be denoted iy®. 17 ones that are coincident with IPTs.

(d)

& 2.1. De nitions 138 Proposition 1. Let p2 DnC(t) be a point interior to the do-
s De nition 1. A point on a curve at which the curvature changesmain.V (p) , D if and only if9 an internal tangent which can
s Sign is called arin ection point. 1o be drawn from p.
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w1 Proof. Refer [17] (Section 2.1) O

w2 Our algorithm only uses the forward direction of this dou-
13 ble implication, which allows us to draw internal tangemtsf
14 POINts which cannot guard the entire domain.

(@) (b)

Figure 4: A gure showing two example curved domains. GudkdsandG;
have been placed, and a new candidate g@ariying on the IntT drawn from
G2 has been obtained. (@) andS form an empty triangle witls; (b) C1SG
intersects the curved boundary.

@ (b)
173 Rule 1 implies thaG, in Figure 3(d), drawn as internal tan-

s gent fromGg, is able to see the silhouette point@&f and some
s region beyond it. Rule 1 can be applied repeatedly to nd new
e guards to cover the domain. Section 4.1 later describes tiow t
17 place new guards beyond the corresponding silhouettegoint
s The algorithm in this paper involves the identi cation ofen
e guard as per this rule in each iteration, and hence this geard
10 termed as theubsequerguard.
. While Rule 1 enables us to nd subsequent guards, this rule
12 @lone is not su cient to ensure termination of the algorithm in
Figure 3: (a) A guard located at P has no internal tangentsavets the entire ** all cases.This is t?ecaP'Se’ ”?] curves Wh'Ch require more than
domain. (b) Even though only one IntT can be drawn fi@m one or more 1« ONE guard, every interior point has an internal tangent.ceen
guards are still required to cover the remaining regionUg@yuarded scenario;gs regardless of where we place our rst guard, we can keep nd-
for a domain requiring two guards (d) Full coverage obtaibganoving them s iNg New internal tangents (and thus new guards on them), lead
so that one guard lies on the IntT of the other. . . . .

17 ing to a doubling back into already guarded regioktence,

s  For example, in the Figure 2(b), a guard placed at A vitfl W€ add a further rule which enables us to cut down on possibly
1 Not see the curve portion counterclockwise from S to O daéedundant candidates for the subsequent guard. This isibase
.« to the presence of an internal tangent. However, in the Bigegirn theintuition that a subsequent guard placed on an internal
1 3(a), a guard located at point P can see the entire region a& f9€nt of an existing gua@ may not be required when the

. internal tangent can be drawn from the point to the curveafiot '€9ion beyond the intT's silhouette point is already vieilo

= intricate region within a curve (Figure 3(b)), only one imtal * @nother existing guard. For example, in Figure 4(a)Geand

s tangent can be drawn from the guddg. NeverthelessG; is G be the current set of guards. L@&C; be an internal tan-

= still required to cover this region. 15 gent drawn fronG, andC; be the subsequent guard obtained
= Further it can béntuitively observed that, for a curved do PY Rule 1. SinceéS G is visible to an existing guar,, the

1% main requiring only two guards to cover it, the guards can'Bd1€W candidaté, is not required in this case. So we propose

1 placed in such a way that one guard can see the other andtH rule:

1 line segment connecting them is tangential to the curve. Eople 2. Empty triangle property: An internal tangent drawn
15 example/et usinstead place two guards which do not see egghom an existing guard is considered for determining a subse
15 other (Figure 3(c)), i.e. the line joining the guards iné@ts the ., quent guard only if the triangles formed by its silhouettépo

1= boundary of the curve. By Proposition 1, there exists attleass and occlusion point O with each of the remaining guards are
1w One internal tangent which can be drawn from each of themaot completely interior to the domain, i.e. given a set ogexi

12 Let the corresponding silhouette points ®gandS,. The re- ing guardsG and an intT drawn from @ no subsequent guards

12 gion on C(t) lying betweenS, andS;, if seen clockwise, is,,, |l be placed on intT iBG; 2 GrG; such thad(SOG) D .

13 left unguarded. Now if these guards are moved so that their

w internal tangents become collinear (i.e. by placing onedjue  Such triangles which lie completely insid® are referred

1ss ON the internal tangent of the other like in Figure 3(&)),and =+ to asempty triangles For example, the internal tange®@;C,

s Sy will coincide. As a consequence, there is no unguardedeeforms an empty triangle (S GG,) with Gy in Fig. 4(a) and

167 gion betweerS; andS; like in the previous case. Based on this hence no guard be placed @aC;. It can be seen th&; and

1 iNtuition, we have the following rule: 210 G are su cientto cover the domain. On the other hand, in Fig.
10 Rule 1. Let G; 2 D be a guard which does not see the entiﬁ§4§:§)&(\;\ghere (SGGy) is notan empty triange, a guard@tis
1o domain. Another guard can be obtained by drawing an internaln '

1 tangent from G and choosing a point on the internal tangent De nition 9. An internal tangent from a guard is called a valid

12 beyond its silhouette point. au internal tangent, and needs to be considered for determinin
3
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13 Proof. Let us start with a set of guards which are connected
o o / 210 Dy internal tangents such that sgme tarllgﬁﬁj intersects an-

25 other tangent, sagyG, at the pointl. Since we do not want

26 iNtersections, we create a new guard.aHowever, doing this

27 means that is not connected via an internal tangent to one
R 2 Of the guards fronG; andG;, and one fronGy andG, (seg-
20 mentsiG; and IGy in Figure 6(a) are no longer internal tan-
(@) (b) =0 gents). More precisely, if the silhouette point®{G; lies on

21 the segmen®;l, Gl remains an internal tangent ai@; is no

22 longer one, and vice versa.

;3 Thisisaproblem because we require the line segments join-
»s¢ iNg all our guards to be internal tangents. To remedy this, we
25 subsequent guards, only if it satis es the empty triangleppr s can delete such guards whose segments Imith longer form

2 erty (Rule 2). 26 internal tangents, and their subgraphs, from the guardrées.

27 Will leave some part of the domain uncovered. Now, by Propo-

27 Proposition 2. Given a domairD and an initial set of guardsz: Sition 2, we have valid internal tangents which we can con-
2 G, repeated application of Rule 1 and Rule 2 will eventuatystruct froml to place new guardsy; andG, in Figure 6(b))

210 give a new set of guard3® which can cover the entire domairxe until the domain is covered again. The empty triangle prop-
2a1 €rty is not broken at any point doing this construction and no

20 Proof. Assume, on the contrary, that we have a set of guatdRave a set of guards covering the entire domain, joined by non
21 GY which do not fully guardD and that no subsequent guargds intersecting internal tangents. O

22 can be added by Rule 1 because of Rule 2 (i.e. none of the

223 existing guards have valid internal tangents)_ fat 5 :: g 2 Proposition 3. Let G denote a planar graph with its vertices

2« be the set of disjoint componentsin that are left unguardedss s guards and the edges as the internal tangents between the
s by GO (i.e. the union of shaded regions in Figure 5(a)). Theguards as obtained by Rule 1 and Rule 2. There exists at least
26 guarded portion oD adjacent to any ; must be guarded by One set of guards forming the vertex seGathat can cover the

2 some guards; 2 G such that a part of the internal tangdntzs €ntire domain such tha forms a spanning tree [18].

= drawn fromG,; to C(t) forms the boundary of; (the segment "o, ¢ 5100 4 initial guard is located (see Sections 4.1 and

20 SQOin Figure 5(a)). Since; is unguarded] must have been . L
) o 210 4.2 Rule 1, wi n draw internal tangents from the exgsti
=0 rejected as a valid internal tangent due to Rule 2, and hénce | ). by Rule 1, we can draw internal tangents from the exgst

2n fOrms an empty triangle with some guard. Let this guard zBeguard, where a subsequent guard is placed on one of the inter-

2 Gy, i.e. we haves: O 2 V (Gy). Because the domain is simpli;z nal tangents. This process can be repeated till the entinaiio
. ’ = . is covered (when there are some portions left uncovered, the
2 connected, the segmeBtO 2 V (G;). SinceG; can see any ’

- poiNt onS Q) it can also see some poiRtying on S Owhichis ** the.re exists a valid IntT (Propositio_n 1 ar\d Propositionsmg
2 also a part of the boundary of. S09P not lying onC(t) such “* which subsequent guards can be identi ed). The gr@phill
26 thatG; P can be extended to cross over in{o This means that not have a cycle because the only way of gett_mg a cycle 'S b-y

oL e o . - %% placing a subsequent guard at the same location as an gxistin
= ahpomtlnterl(_)rtorj] IS \_"S'_blef tothe guar?l,dwhlch contradicts guard, and that would contradict Rule 2 because both the sil-
= the assumption thay; is, in fact, unguarded. 0 ., houette and occlusion point of the new guard will be visible t
280 the existing guard. Further, every edgédris disjoint except at
2a1 its endpoints by Corollary 1. Moreover, the graph is coneéct
22 @S every guard has an edge to at least one another guard via an
283 internal tangent. Hence the Proposition. O

Figure 5: Proof of Proposition 2 - repeated application ofeRuU and 2 can
cover the entire domain.

2« Proposition 4. Let G be any set of guards that can cover the
2ss entire domainD. Let W be a set of visibility-disjoint witness
286 points (refer De nition 8) inD. For any G and W, we will

27 always havéWwj jGj.

Figure 6: Corollary 1: (a) A con guration of guards such thaernal tangents .55 Proof. We will prove this by contradiction. Assume tHay 2
intersect at, (b) | is added to the guard set, a@gl andG are recomputed via D h thaf\Wi iGi Si G h ire d ain
internal tangents frorh to give a new set of guards joined by non-intersectif§ such thajWj > JGJ. SinceG can see the entire Om_ )
internal tangents. 20 We have8W, 2 W, 9G; 2 G such thatV 2 V (G;j). But since
20 JWj > jGj, there exists at least one guard which can see two
I h ) ¢ q — 22 OF more witness points because of the pigeonhole prindigle,
230 COro ary 1. There exists a set of guards covering the ent2|g3egGk such thavy (Gk) contains bottW,,, andW, for somemand

20 domain such that every guard is connected to at least one o;grqu However, this also means th@g 2 V (W) andGy 2 V (W),

2 guard by a valid internal tangent, and the internal tangeares i -h means tha¥ (Wi)\V (W) = Gy which means that
2«2 NON-intersecting except at their end points. t




(a) (b) ©
Cy
(d) (e a2

Figure 7: Demonstration of how the initial candidate guamisobtained for two test examples. (a),(d): T@continuous curves; (b),(e): IPTs drawn from each
of them; (c), (f): The candidate guard set comprising of thims of intersection of IPTs with each other, or the ocdagpoints in case the IPTs are disjoint.

206 Wh andW, are not visibility-disjoint. This is a contradiction oge be found from any of the guards in the graph. The algorithm
207 the de nition of a witness point. 0 s« then terminates.

208 Corollary 2. jWj = jGjimpliesG is the minimal set of guards _ _
200 required to cover the domain. =2 4. Algorithm details

w  Asaresult of this, we can say thatis a lower boundonthess  The algorithm consists of the following steps:
sn Number of guard& and can give a measure of approximately

2 how close the value §6jis to the optimum. 324 Finding a candidate set of guards.

ass Finding a subsequent guard from the set of candidate
w3 3. Overview of the algorithm 336 guards.
wa  The algorithm starts by nding a set of candidate guards Picking the anchor guard from the guards in the graph.

ws derived from IPTs and their intersections (Section 4.1Cyt

w0 Of the candidate guards, one guard is chosen in each iterdtio
a7 based on maximum visibility (identi ed using the number of )
s internal tangents from the guard) and the rst order appln0§é4'1' Candidate guards

s followed in hidden Markov models [19] (Section 4.2). Identio 4.1.1. Candidate set of guards at the start

a0 cation of internal tangents, a local-based approach hanbe  As there are no vertices in a given closed curve (Figure
.2 combined with a “look ahead' approach (local approaches hav/(a)), the in ection points present in the curve are usedéers

=2 been shown to be working well in practise, see [16]). Thougrence. IPTs are drawn from all the in ection points till they i

s the “look ahead' can be adopted at any level, in this work, swdersect the curve at their occlusion points (Figure 7(bpint3

s have employed to one level, termed as " rst order'. A graghof intersection of the IPTs, when they intersect, and théuscc

ais StructureG is initiated with the starting guard as a vertex amelsion points when they do not, are used as candidates for e r
216 NO edges at this juncture. a7 guard (Figure 7(c)). In another test example (Figure 7&3) pll

317 In each iteration of the algorithm, the guard among all thelPTs (Figure 7(e)) only intersect the curved boundary (sl

a1 €Xisting guards which has the minimum number of valid intes-do not intersect among themselves), the correspondingi-occl
a0 Nal tangents (De nition 9) is identi ed (this is dealt in S@@n = sion points are chosen as candidate guards (Figure 7(f)).

w0 4.3) and will henceforth be referred to aschor guardfor that

= iteration. The candidate guards for the next iteration anlg os: 4.1.2. Candidate guards after identifying at least one guar

122 chosen from points lying on the internal tangents of the anck: ~ An anchor guard is chosen from the existing guards (as per
w3 guard (see Section 4.1.2 for details). The subsequent gsiasa Section 4.3) and only thealid internal tangents drawn from the

24 chosen from these candidates by using maximum visibility aa anchor guard are used for nding candidates for the subsgque
2 the rst order approach along with the empty triangle prapess guard. LetG be the anchor guard ai@O be an internal tangent

w2 (Section 4.2). The vertices i@ are updated with the identi edsss drawn fromG whose silhouette point iS. Clearly,G does not

a7 guard and the edges are updated with the correspondingahter cover the entire domain because it has a valid internal ta&nge
xs tangent joining the identi ed guard and the anchor guarde Th GO. As per Rule 1, another guard should lie somewhere on the
29 above procedure is repeated until no valid internal tangantss line segmenS QO Hence, we consider the occlusion po@dt

5

Termination of the algorithm.



%0 and the points of intersection of the IPTs with the line segime

w1 S Oas candidates for choosing the next guard.

a2 For example, in the Figure 8(a), the candidates for the tan-

w3 gentGO; areCy, C, andO;. In a similar manner, further can-

s« didate guards such &, C4 andO, can be obtained from the

s Othervalid internal tangenG0O;, as they lie beyond its silhou-

xs ette points $1 andS; in the Figure 8(a)) fronG (do note that

w7 P1, P2, P3 andP,4 have been excluded as they lie before the sil-

s houette points). Figure 8(b) shows the set of candidatedguar

ws  Though Proposition 1 only talks about points lying strictly

a0 interior to the domain, it holds good even when the candidate (@)
an guard is a point on the boundag(t) if the point is convex,

a2 Whereas it need not be true if the point is concave (De ni2dn

ars FOr example, assume that we have a domain as shown in Figure

s 8(C) and the guar@; has been placed. This guard has only one

ars valid internal tangent;0, and since no IPT intersects with it,

as the only candidate guard is the occlusion paintPlacing the

a7 Subsequent guard atdoes not coveD fully, and since one

ars cannot draw any further internal tangent franthe algorithm

ars Will terminate even thougl®; ando do not cover the entire

s domain. This happens becauwsie concave. In practise, when a

s candidate guard is a concave point and no valid internaktaing

2 can be drawn from that guard, a small perturbation towarels th (®) ©

a3 interior of the domain is made (such agerturbed toG; in

« Figure 8(c)) and this is added as the subsequent guard so tHag'e 8 (&) Candidate set of guards for the given curve.IPfis of the curve
are shown in grey and the internal tangents from the exigumydG are in

ws the algorithm doe_s not halt prematurely. red, (b) The candidate guar@s, Cy, Ca, Cs4, O1 and O, obtained as per the
s Though there is no hard and fast rule to select a set of carapproach in 4.1.2. (c) Guard at concave segments.

a7 didate guards, the procedure described here is similareo th
s ONe used in [16] from the algorithm& and A;; that eventu-  Algorithm 2 G = S electT heGuardCGg
= ally were proven to be a good candidate set. Description foiput: A set of candidate guard€Ggobtained from the an-

a0 determining candidate guards is shown in Algorithm 1. chor guard3, (=NULL at the start).
Output: The chosen guarG .
Algorithm 1 fCGg= CandGuard&3) 1. LetfCGg=fCy;Cy;:: g
Input: An anchor guar@ (NULL at the start). 2: for Each guard; do
Output: A set of candidate guard€Gg 3. Draw the set of internal tangent$rom C;.
1: Let P be the set of IPTs. 4:  if Gg, NULLthen
2: if G, NULL then 5 for Eachljin | do
3:  Find allvalidinternal tangents fror®. Let the silhouette 6 Let S; be the silhouette point ard; be the occlu-
points befSgand corresponding occlusion poiri@g sion point.
4:  Candidate GuardiCGg= fOg [fP;\ S;0O;g 8P; 2 P, 7. Let G be the vertex set db.
8j, i 8: if 9g2 Gsuchthat (S;0;9)\C (t) = then
5: else o [ =1Inl;.
6: Candidate Guard€Gg=fOg[fljl = P\ P;8fP;;P;g2 10 end if
Pj, ig 11: end for
7: end if 12:  endif
8: return fCGg 13:  G;p = fG;jCi has minimunijljg
14: LetG be arandom guard from the @1 .
15: end for

= 4.2. Selecting from the candidate guards - Firstorder appto ~ 26: G = G [ (G ;1i), wherel; is the internal tangent between
G andGg, (lj is NULL for the starting guard).

w2 Oncethe candidates have been obtained, one needsto Ch097°‘-ereturn G
w3 @ guard among these and update the gi@itcordingly. For : :
s this, the visibility of each candidate is determined by liogkat

= internal tangents from it, as the presence of further vatiernal ., | ooking at the internal tangents from the candidate guasds t
= tangents implies it cannot see part of the domain (Propusifj, choose the subsequent guard is akin to the rst order approac

w7 1). It may be noted that the candidate guards themselves afenically followed in hidden Markov models [19]. Broadlypa

= arrived at by drawing internal tangents from an anchor guagdhih order approach implies that the state at a predecessbidev

6
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Figure 9: lllustration of choosing a guard from a set of cdaté guards. (a) From the candidates in gure 7@),s chosen as a subsequent guard since it has no
internal tangents (and hence it also covers the entire dgm@)-(c) Internal tangents are drawn from the candidaiatp obtained in Figure 7(f) an@;, having

only one valid internal tangent, is chosen. (d)-(e) An imtediate step in the algorithm where two gua@sandG, have been obtained and new candid&les

C», 01, andO; are obtained taking, as the anchor guard. Figures (f)-(i) show the internal tategdrawn from each of these candidate guards. Since aleof th
form empty triangles witlG,, they have no internal tangents and any can be chosen ashbegsient guardC; is chosen in this case.

w3 arrived at after a prediction maderasuccessive levels. If only.s the one with the minimum number is picked as the subsequent
«04 ONE successive level is employed, then itis termed as rdeo .. guard. The grapks is then updated with this guard as a vertex
s approach. «s and the internal tangent between the guard and its corrdspon
«s  Toselectaguardfrom the candidate set, the number of valithg anchor guard as an edge.

«7 internal tangents from each candidate guard is countecalRee ~ For example, given the anchor gu&@gl the candidate guards
w8 that a valid internal tangent should not form an “empty triasa are shown in Figure 9(e). Figures 9(f)-9(i) each shows ireer

00 gle" with any of the existing guards. Note that while chogsin, tangents drawn from one of the four candidates. All the in-
a0 Starting guard from the candidates obtained in Sectiornl 4.4 ternal tangents form empty triangles wiB», and hence each

.1 the empty triangle check is redundant because no guards exisandidate guard has the same number of valid internal tasigen
a2 at the start. So the guard with the minimum number of internalmplying any of them can be chosen as the subsequent guard.
a3 tangents is chosen as the starting guard. For example,g-iguFor example, ifC; is selected as the guard, th€pis added to

a2 9(b) shows the candidate guards at the start of the algorithrine vertex set ofs and the internal tangei,C, is added to

«s and their internal tangents. All candidates but o@g) (have s the edges. Algorithm 2 encodes the procedure for selecting a
«16 two internal tangents and henCe is used as the starting guarg guard.

a7 (G in Figures 9(c), 9(a) for the respective test examples in Fig

as ures 7(d), 7(a)) and is added to the currently empty g@ph <7 4.3. Picking an anchor guard

«s However, wherG is non-empty, one needs to check forthe  Next, an anchor guard needs to be picked among the guards
w0 presence of empty triangles between an internal tangent andirrently inG. This is the guard from which internal tangents
« €ach of the existing guards. The number of valid internal tapill be drawn to nd candidates for the next iteration. A sifap

« gents (De nition 9) is counted for each candidate guard, glihrocedure is used to do this. All the valid internal tangents

7



G 2 G 2 Gz Gz GZ
(@ (b) (©) (d) (e

Figure 10: (a)-(c) show how an anchor guard is picked fromadjset 0fG; andG,. (a) Existing guards, (b) Internal tangents drawn from ezdhem (blue), (c)
The tangenG1G; is not considered valid as it overlaps with an existing edg8.i Hence ,G; has zero intTs whil&; has two.G; is picked as the anchor guard.
(d)-(e) illustrate the picking of an anchor guard afieris added to the guard set. (d) Gua€lsG, andG3 and the current grapB (e) The internal tangents drawn
from each of the guards (the ones which are not valid are slowink). G, is picked as an anchor guard because it has least hon-zaantaks.

T@TD

(a) Candidate guards fro@, (after the set(b) Internal tangents from the candidate (c) G4 is added to the graph.
of guards obtained till Figure 10(e)). guards.

Figure 11: Finding the candidate guards fr@mand choosing the subsequent one.

Gl Gl

Gz G2
(@) From all the guards in the graph, rd) Final graph (spanning tree) having four (c) Guards with covering regions
guard is having a valid internal tangent.  guards covering the entire domain.

Figure 12: Termination of the algorithm.

«2 from each of the guards i@ are found (excluding the tangents Algorithm 3 SG= PickAnchorGuardG)

2 forming edges inG). The guard with the minimum number Input: Current vertex set (quard§of G.

e Of non-zero valid internal tangents is then picked as an@nch Output: NULL or an anchor guar®, from G.

ws guard. 1: Let; be the set of valid internal tangents for e&gi2 G.

ws  Figure 10(a)-10(c) illustrate the ow for the graph consist  2: if 8i;jl;j == Othen

w7 ing of guardsG; andG,, whereG, gets picked as an anchor 3. return NULL

«s guard for nding a subsequent guard. Figure 10(d)-10(ejwsho 4: else

we another instance of the graph from which an anchor guard hass:  return G, with minimum non-zergl;j.

w0 t0 be picked for further iteration. The internal tangentsoh  6: end if

s are not valid, either because of the empty triangle proparty

2 because they overlap with existing edges in the graph, are in

w3 dicated in pink. Algorithm 3 indicates the steps in picking a&s can be drawn from any of the guards in the graph, i.e. the cur-

4 @anchor guard from the current graph. w0 rent set of guards can see the entire domain. The terminigtion
w1 encapsulated in Algorithm 3 itself.

s 4.4. Termination of the algorithm

#  The algorithm terminates when no guard with non-zero ntinft-5- lllustration of the algorithm

a7 ber of valid internal tangents is available as an anchordyuar A high level description of the entire algorithm which re-

sss from the current graph, as it indicates that no internal ¢zg) «- turns the set of guards covering the domain having a curved
«s boundary is given in Algorithm 4.

8



Algorithm 4 FindGuards(Curved DomalD) Algorithm 5 FindWitnessPoints(Curved Domdin)
1: Input: DomainD having a continuous curved boundary.  1: Input: DomainD having a continuous curved boundary.
2: Output: G whose vertex set give the guards (VLs) cover- 2: Output: W consisting of witness points inside the domain

ingD. D.
3:G=fgi=0 3 W=fgi=0
4: Find the set of candidate guards,CG = 4: Find the set of in ection point$ of C(t). Set the unvisited

CandGuardéNULL) in ection pointslem=1 .
5. Select the guard fror@G, G; = SelectTheGuai€Q 5: Find the visibility regiond/ (1) for each in ection point by
6: while (Ga:PickAnchorGuard% Gi)), NULL do nding its IPTs and IntTs.

) i=1 6: while l,em, NULL do
7. Find the set of candidate guardsCG = 7 Find the in ection pointl which is visible to least num-
CandGuard{Ga) ber of other in ection points.
. Selectthe subsequent guaBi= S electT heGua€Q 8 Select this as a witness poiftt,= W[ | .

o i=i+1l 9:  Updatelem=fljl121 andl\V (1 )= g
10: end while 10: end while
11: return G 11: forall w2 W do

12:  Find the occlusion points of IPTs and IntTs freamand

. . . ) draw IntTs from each of them.
ws  Theillustration of the algorithm (Algorithm 4) uses thettes .. | 1o for silhouette points s such thet(s)\V (W) =
w7 example 2 (Figure 7(d)). The candidate guards are identied and add s taV.

«s Using the intersection points of the IPTs and the occlusmntp . end for

«0 Of @an IPT, if it does not intersect any (Figures 7(e) and 7(f)) 15: return W
a0 Using the rst-order approach, the starting gua@i) is then
«n identi ed (Figure 9(c)). Graplt is initiated with the guar;

«z With no edges. sz 0cclusion points of IPTs and points lying interior to the dom

e Since there is only one guard, this guard gets picked ash@vhich are good candidates for nding the guards).

«s @anchor guard for the next iteration. In the next iteraticem-,,  Algorithm 5 describes the steps required for nding witness
«s didate guards are identi ed by internal tangents drawn f®m . points. A candidate-based rst order approach is used vihere
s and using the rst order approacdB; is identi ed as the subsex the in ection point whose visibility regions intersect Wwithe

«r quent guard (Figure 10(a)}s is then updated with the vertex; |east number of other in ection points is chosen as the isigt

e Gz and the edg&,G,. Now, usingPickAnchorGuar@Gi[ Gz), « witness point. A set of “unvisited in ection points';em, con-

« amongG; andG,, G; is picked as the next anchor guard (Fig; taining the in ection points which are visibility disjoinith

w0 ure 10(c)). FronG,, the set of candidate guards are identi ed every point in the witness set is maintained. This set seages
« (Figure 9(e)) and following the rst order approach and pef:-the candidate set for nding new witness points. In each,step
«2 forming checks for valid internal tangents (Figures 9(h9 ... the point which can see least number of pointkdp is chosen

w3 guardGs is added toG along with the internal tangent as the, as a witness point and the in ection points visible to it age r
%+ edge (Figure 10(d)). Then, amo@g, G, andGg, G; is picked 4., moved fromlem. The process iterates until all in ection points
s as the next anchor guard (Figure 10(e)). Candidate guavs ff; are visited, i.e. until,em becomes a null set.

0 Gz and their further processing using rst order approach-isik It can be noted that the witness points in the above proce-
« lustrated in Figure 11. Botll; and Oz have no valid inter-,, dure have been obtained solely from in ection points. Hence
w8 Nl tangents, s@; is added a3, to G with the internal tan- 4, this will not give a good estimate in the case of curves having
w0 gent betweer, and its anchor guar®; as the edge. After,;, long spiral regions without in ection points. In order to-ac

w0 this, PickAnchorGuarﬂS Gi) returns NULL, as no guard hag&® count for these regions, internal tangents are drawn fram th
i= sz 0cclusion points of the IPTs and IntTs of each witness pdint.

i=1
w1 a valid internal tangent (Figure 12(a)). Hence the algarith, 4y sjlhouette points of these IPTs and IntTs is also vigjbil
« terminates and returns the grat{which essentially is a span;,, gjsjoint from the existing witness points, it is added to tfee
«: Ning tree, Figure 12(b)). Figure 12(c) shows the coverage,off witness points.

w0« €ach guard in dash-dot lines.

s 4.6. Finding a set of witness points =5 5. Results

ws  Unlike the guard set, the witness points need to be vigibilit ~ The developed algorithm has been implemented using the
w7 disjoint. Since we want as many witness points as possiblg;ifRIT geometric kernel [20]which contains function for the
«s Order to estimate a good approximation ratio, they should.peomputation of internal tangents, aimdection, silhouette and
w0 placed at regions which have low visibility. Thus, in eatio.,, occlusion pointsfor further details on such computations, please
s0 POINts, silhouette points of IntTs, and points on concageres ., refer [8]). The curves used are represented using non uniform
s make for good candidates for witness points, as opposeeta:thational B-spline (NURBS) for the purpose of implementatio

s»2 though the algorithm itself has no such restriction.

9
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Figure 14: Results: Guards (shown in red dots), spannimeg(tesl dots with red lines), witness points (dots in dark pfaerandom shapes.

Fig. no. | 13(a) 13(b) 13(c) 13(dy 13(e) 13(f)| 13(g) 13(h) 13(i)| 13()| 13(k) 13(I)| 13(m]) 13(n) 13(0) 13(p) 13(qg) 13(r)
NOG 1 2 3 5 2 2 3 2 2 4 3 4 4 5 6 6 4 6
WP 1 2 3 4 2 2 3 2 2 3 2 3 4 5 4 5 2 4
AR 1 1 1 1251 1 1 1 1 13315 |133|1 1 15 |12 |2 15
Time(s)| 4.11| 4.47| 3.49| 55 | 39 | 798| 5.01|8.88| 4.7 | 402| 753|84 |5 8.54| 8.88| 8.85| 7.54| 7.5

Table 1: The number of guards (NOG), number of witness pgivB) for various curved shapes, AR NOG/WP) - Approximation ratio and Running Times (in
seconds) for curves in Figure 13.
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Fig. no.| 14(a) 14(b) 14(c) 14(d) 14(e) 14(f)| 14(g) 14(h
NOG 5 5 6 3 5 3 5 5
WP 3 4 5 3 3 2 3 4
AR 16712512 |1 16715 | 1.67| 1.25
Time(s) | 7.98| 11.17 18.95 5.57| 10.18 5.73| 11.59 14.8

Table 2: The number of guards (NOG), number of witness p@i) for randomly generated curved shapes, ARIOG/WP) - Approximation ratio and Running
Times (in seconds) for curves in Figure 14.

533 Implementation results in Figure 13 indicate that the alged.e. W, is not necessarily a “tight' lower bound in all cases and
s rithm can handle a wide variety of curves, right from curvesat times, it may be less than the optimal number of guards Thi
s having a large number of in ection points to those havingyet: might hence lead to a higher apparent approximation rasio th

s few. The tested shapes include typical used ones in visiltoh s is actually the case. The algorithm has been tested on many
s37 cation problems such as star-shapes, comb-like objedtalsspss cases such as star-shaped, coil-like, comb-like etc. aylpic

s3s €tC. In general, depending on the characteristics of thpesha: used as worst-case scenarios in the visibility locatiomems.

s39 We can either have a larger number of guards than the numb8ased on the testing for a number of curves (other than the re-
s Of in ection points, or vice versa. For example, locally it s sults shown in Figures 13 and 14) and to be on the safer side, we
su Shaped objects (Figure 13(d)) have fewer in ection poinis b- can clearly say that thiy is not more than twice the optimal

se2 Fequire more number of guards. This scenario has been gapumber and hence the following conjecture:

s3 tured by the algorithm (also see Figure 13(m) - 13(p)). On_ . )

..+ the other hand, star-shaped objects that have larger nushbir Conjecture 1. For a given curved boundary, N 2Nop, where

« in ection points might require only one guard (Figure 13(a)® Nop iS the optimal number of guards.

s This has also been captured. Results for comb-like shapes ar _

s shown in Figures 13(b) and 13(c). Results for a combinatforfp?-1-2. Comparison _ _

= high curvature thinner and thicker regions are shown infégu 10 the best of our knowledge, no algorithm seems to exist
s 13(e) - 13(g). The algorithm has also produced guards for efor the visibility location problem for a domain having a vad

= jects that have low curvature regions in conjunction witghigr s boundary with no explicit vertices. Placing the guard on the
s ones in Figures 13(j) and 13(). Guards for an object witheaCurved boundary has been addressed in [8] using a disaetize
s constricted passage is shown in Figure 13(k). The a|goriﬂaﬁﬁpproach with an exhaustive search and gives a conservative
= can also handle high curvature regions havingedént widths s estimate (not optimal). Perhaps, we use only a subset of com-
= (Figure 13(c)). The algorithm also captures scenarios evhirPutations as that of [8]. We believe that our approach ofgisin
= all the guards may lie interior to the curved boundary (Feger internal tangents characterizes the local shape and gepoaiet

sss 13(i), 13(q) and 13(r)). A few more results for randomly sbdp the domaln Well. _Framework for visibility problems in [14ka

s curves having very sharp turns is shown in Figure 14. Thes#Se a discretization-based approach whereas the appraach p
s results show that the algorithm can generate guards fareic vided in [15], apart from discretization, also uses one hedd

= ently con gured curves. In both Figures 13 and 14, the owpt guards as the initial set. Running time of the results on &l in

s Seconds, as indicated in Tables 1 and 2 (the running times of
« 5.1. Discussion «0s Other works cannot be compared directly as the con guration

7 are di erent from those in this paper). As our running times

s« 5.1.1. On the optimal number of guards s are not too slow, it is a reasonable tradewith discretization,

s LetNg be the number of guards returned by our algorithm, i introduces gaps in visibility maps and hence not guara

ssa Let jWpj be the maximum cardinality visibility independent set teeing 100% coverage [14] as opposed to 100% coverage as can

= (1., maximum number of witness points that one can delefys seen from the results in Figures 13 and 14. It can be noted
sss mine for a given curve). Then the rati,5W,j can be said

i that, in [8], the running times are of the order of a few sesond

=7 0 estimate how close our algorithm's output is to the likely, 02" minute on a moder PC. As our starting candidate

= Optimum [16]. Let this ratio be termed as approximation ra-o, - ys include intersection of IPTs, our algorithm has thie a

s tion (AR). Tables 1 and 2 show the number of guards, witnes : : :
. . - t tured that dedb I hwh
s0 points andAR for the set of input curves in Figures 13 and y 0 capture domains that are guarded by a single guardiwhi

i ; : 16 1S NOt possible to achieve if the guards are only on the baynda
o respectively. In many of the inputs, the obtaingB was 1, P 9 y ayn

I S . a7 (such as [8]), see Figure 1.
s Indicating the correspondinty is optimal (Corollary 2). In = e iteratures related to curved boundary such as [12, 13

== few of the cases, théRwas 1.5 and in others, between 1 are]ld use the explicit notion of vertices. It is not possible to qare

7 1.67. Inthe worst case, the AR obtained was 2 (Figure 13(3 With their results even after arti cially adding verticesia ec-

s Another point worth noting is that the maximum number ofwg; tign points and splitting the curve boundary into concave an

s NESSs points need not always be equal to the minimum number 2 vex seaments. This is because [12] onlv considers pok/ao
s guards (e.g. in Figure 13(q), there is no way of placing tioree g ' [12] only polyg

i ints wh isibilit . q L intefre ™ with edges which are eithell piecewise convex aall piece-
=7 MO WINESS points whose ViSIbility regions do not inte }56624 wise concave, and [13] is only restricted to curves where the

11



664

Future work would involve identifying ways for reducing

s the number of starting candidate guards. Another possibtk w
ss 1S t0 employ the algorithm for a curved domain having holes (o
7 Obstacles) as well as to curved surfaces. Applicationslace a
sss being looked at.

6

3

670 [1]
@) (b) o7t
672
Figure 15: (a) An example where straight line segments ey e absence of6 (2]
in ection points; (b) A possible x by adding the tangentstae endpoints of
the straight line sections, if interior ©(t), to the list of IPTs BE andDF). 676
677 [3]
n 678
s edges between any two vertices are convex. s70
680 [4]

681

ws 5.1.3. Limitations
27 One limitation of this algorithm is that the number of caff:
«s didate guards could be very large at the start, even thoughsr,h
w9 cUrve might nally require only a single guard. For exampkes
«0 Figure 7(c) has a few candidate guards at the start, where: a¥l
s only one guard is required to cover the entire domain (F;’lié
s Ure 13(a)). Also, ties obtained when multiple candidateghg, [7]
«s the same number of valid internal tangents are currently o
«a ken randomly. A better method of breaking ties remains to*be
«s found. The input curves are assumed taMecontinuous and.,.
«s hence algorithm does not handle curves with discontimuitie .,
s« there is a discontinuity such as a cusp, then there is no anigu [9]
«s Well-de ned tangent at such a point, and hence the algorittim
s has to be suitably modi ed to handle such cas@se possible,,, (1,
a0 direction to explore would be adding the segments of the tan-
s1 gents at each cusp that lie interior to the curve to the setist-e 7o
a2 INQ IPTs at the start of the algorithrMoreover, the algorlthm
«3 cannot handle curves which contain straight line portibtise |

eas Straight line portions begin or end at what otherwise wonaivzidq
w5 been in ection points (such as segmeAB andCD in Figure s [12]
s 15(a)). It might be possible to address this by detectirajgitic ™

&7 line segments and adding the tangents drawn at their emstpqu [13]
ws If iNterior to the curve, to the set of IPTs (see Fig 15(#)so,
w9 @n internal tangent with more than one tangent point witlint°
«0 duce more than one silhouette point and we have not han:dllé
1 this case.

(5]

(8]

[11]

709

713
714 [15]

715

ss2 6. Conclusions and future work

717 [16]
In this paper, an algorithm for visibility locations (guajd-..

s« that can be interidon the curved boundary has been developed!7]
s and implemented. It has been proposed that the guards ﬁ%lve
sss t0 form a spanning tree that provides a near-optimal numbe,gqu,g]
es7 Visibility locations. Using the witness points, it has be@iown s

s that, in many of the tested cases, the algorithm results in op [19]
s Mmal number of VLs. The results also enabled us to conjecggire
s that the algorithm does not result in more than twice numbey,0/2q
«1 Optimal VLs, as the approximation ratio was no more thamn:2.
«2 Results indicate that the algorithm is very amenable fodémp

«s3 Mentation.

653
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