
On the visibility locations for continuous curves

Abstract

The problem of determining visibility locations (VLs) on/inside a domain bounded by a planarC1-continuous curve (without
vertices), such that entire domain is covered, is discussedin this paper. The curved boundary has been used without being approxi-
mated into lines or polygons. Initially, a few observationsregarding the VLs for a curved boundary have been made. It is proposed
that the set of VLs required to cover the domain be placed in a manner that the VLs and the lines connecting them form a spanning
tree. Along with other observations, an algorithm has been provided which gives a near optimal number of VLs. The obtained
number of VLs is then compared with a visibility disjoint set, called as witness points, to obtain a measure of the `nearness' of
the number of VLs to the optimum. The experiments on di� erent curved shapes illustrate that the algorithm capturesthe optimal
solution for many shapes and near-optimal for most others.

Keywords: Curved boundary, Continuous curves, Visibility Locations, Guard placements, Sensor location, Splinegon, Covering
problem, Camera placement

1. Introduction1

The problem of identifying regions of visibility within a2

domain (or from outside of it) has been useful in many ap-3

plications such as mold design for manufacturing, inspection4

of models, shortest path identi�cation, placing guards to cover5

an art gallery, sensor location, robot motion planning etc.In6

the case of mold design, the problem is posed as `whether the7

model is a two-piece, given a set of viewing directions' [1].Al-8

ternatively, given a model, the problem is to identify optimal9

parting directions that reduce the number of mold pieces [2,3].10

Viewpoint selection that covers the entire object has been11

used in inspection. Clearly, creating an optimal set of view-12

points (or visibility locations (VLs)) will then reduce theoverall13

cost of inspection (see [4] for a detailed survey on this topic). In14

the case of shortest path identi�cation [5], the visibilitygraph15

has been a very popular construction, which can be computed16

using tangents [6].17

Sensor location also depends on the visibility of a feature,18

apart from several other factors [7]. Other applications includ-19

ing security, computer graphics (hidden surface removal) etc.20

also come under the realm of visibility region identi�cation.21

For further details on the applications, see [8].22

The problem of visibility locations has usually considered23

domain bound by a polygon (a closed shape with well-de�ned24

vertices and edges as straight lines which do not intersect except25

at their vertices), at times with holes, typically solved bycom-26

putational geometers and termed as art-gallery problem (see27

[9]) and occasionally polyhedra [10, 11]. However, the problem28

of VLs rarely considers complex objects such as curved ones.29

Recently, this problem for curved polygons has been addressed30

in [12, 13] by replacing straight edges with curves which areei-31

ther piecewise convex or piecewise concave, but not a mixture32

of both. In the current available literature for curved polygons,33

vertices are well de�ned.34

(a) Three boundary guards (VLs). (b) One interior guard (VL).

Figure 1: Boundary guards [8] vs. guard at the interior for a star-shaped domain
(guards shown as dots).

Determining optimal visibility locations for a single closed35

continuous curved boundary (i.e without explicit notion ofver-36

tices), particularly when the locations can be interior to the do-37

main has not been addressed, to the best of our knowledge. A38

conservative estimate on the number of VLs when the locations39

can be on the walls of the curved boundary has been provided40

in [8] using a visibility chart. The algorithm in [8] requires a41

set of candidates as input, from which either a set of VLs may42

be obtained or the algorithm results in failure. To aid practical43

solutions, they also discretize the visibility chart. Other works44

which discretize for practical solutions include generalised dis-45

crete framework for visibility problems in [14] and geometric46

multi-covering [15].47

Problem Statement, approach and the obtained results48

More often than not, in practice, VLs (hereafter, termed as49

guards, for ease and clarity of explanation) are required to be50

placed not just on the boundary but also interior to it. For ex-51

ample, for a star-shaped curved polygon, as opposed to three52

guards on the boundary (Figure 1(a)), a single guard interior to53

the domain can cover it (as in Figure 1(b)). In practice, it would54
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(a) (b)

(c) (d)

Figure 2: (a) An internal tangentAB, and (b) its silhouette and occlusion points
S andO respectively. (c) In�ection pointsI andI0, and their IPTsIO andI0O0.
(d) The visibility regionV (G) of a guardG shown in red color.

be useful if the guards are allowed to be placed interior/on the55

domain (and not just on its boundary). Hence, given a pla-56

nar domain boundedby a smooth (i.e. withoutC1 discontinu-57

ities), parametric, non-convex closed simply-connected curve58

C(t), this paper aims to �nd the near-optimal number of guards59

that cover the entire domain. To the best of the knowledge of60

the authors, this is perhaps the �rst work aimed in this direc-61

tion. Vertices are not explicitly de�ned in the curved bound-62

ary considered in this paper, and hence it is di� erent from the63

curved domains considered in [12, 13]. Also, no discretiza-64

tion approach has been employed like in [8], though we use a65

rule-based approach like the one used in [16]. However, the66

rules have been arrived upon based on our observations. The67

approach presented is heuristic-based and greedy in nature. It68

adds one guard at a time. Moreover, we employ a �rst order69

approach to solve this problem, typically employed in hidden70

Markov models. It can also be noted that there can be many71

measures to come up with a `good' guard from a candidate set72

(as can be seen in [16]) and our approach is based on internal73

tangents as it is related to the visibility in the case of a curved74

boundary.75

We also have proposed an algorithm to compute `witness76

points', a technique introduced in [16], based on which the op-77

timality of the solution obtained has been conjectured to be78

no worse than twice the actual optimal number of guards. In79

practice, based on the experiments conducted, the proposed80

approach returns the optimal solution for many of the tested81

curves.82

2. Preliminaries83

Let the boundary of a domainD be bounded by a parametric84

closed curveC(t) withoutC1 discontinuities. Let the exterior of85

the curve be denoted byD c.86

2.1. De�nitions87

De�nition 1. A point on a curve at which the curvature changes88

sign is called anin�ection point.89

De�nition 2. A point on a curve is concave if its center of cur-90

vature and outward normal at that point are in the same direc-91

tion, otherwise the point is termed convex (S in Figure 2(a) is92

concave, whereas O in Figure 2(b) is convex).93

De�nition 3. An internal tangent (denoted as IntT) is a line94

segment completely lying to the interior/on the curve (no point95

of the line segment lies exterior to the curve) which is a tangent96

to at least one point on the curve (e.g., the line segment AB in97

Figure 2(a) or AO in Figure 2(b)).98

De�nition 4. The point at which an internal tangent touches99

a curve tangentially is called its silhouette point (henceforth100

denoted by S ) [8]. S in Figure 2(a) is the silhouette point of the101

IntT AB.102

De�nition 5. If an internal tangent has another point lying on103

the curve (apart from its silhouette point), then such a point is104

called an occlusion point (O in Figure 2(b)) [8], and is hence-105

forth denoted by O.106

De�nition 6. An internal tangent starting at an in�ection point107

is called in�ection point tangent (IPT). Its starting pointcoin-108

cides with its silhouette point (Figure 2(c)).109

De�nition 7. A point P 2 D is considered visible to another110

point Q2 D, if for all points x2 PQ; x \ D c = � , i.e. no point111

on the line segment PQ lies completely exterior to the boundary112

of D . Grazing contact is allowed i.e. the line segment can touch113

the boundary (typically tangentially).114

For example, in the Figure 2(b), O is considered visible to115

A even though the line segment OA has a grazing contact at S.116

De�nition 8. Let V (G) = fx j x 2 D and x is visible to Ggbe117

the set of points forming the visibility region of the point G(the118

red area in Figure 2(d) indicates the visibility region of G). A set119

W, consisting of points on or inside C(t) are termed as witness120

points [16] if visibility regions in the set are pairwise disjoint,121

i.e.,8q;r2WV (q) \ V (r) = � .122

2.2. Observations on the visibility of a guard123

The motivation for our observations comes from the fact124

that, unlike a polygonal boundary, aC1 continuous curved bound-125

ary does not have explicitly de�ned vertices. A guard is as-126

sumed to be represented as a point which can see in every di-127

rection (i.e. has a 360� range of visibility). A set of guards is128

said to cover the domain if every point in the domain is visible129

to some guard [9]. Also, a guard cannot see through the curved130

boundary (i.e. the boundary is assumed to be opaque), and can131

either lie on or interior to it. AnIntT is assumed to have at132

most one silhouette point. The following propositions/rules are133

crucial to develop an algorithm to determine the guards in a do-134

main bound by a curved boundary.In the subsequent sections,135

when we draw an internal tangent from a point, we exclude the136

ones that are coincident with IPTs.137

Proposition 1. Let p 2 DnC(t) be a point interior to the do-138

main.V (p) , D if and only if9 an internal tangent which can139

be drawn from p.140
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Proof. Refer [17] (Section 2.1)141

Our algorithm only uses the forward direction of this dou-142

ble implication, which allows us to draw internal tangents from143

points which cannot guard the entire domain.144

(a) (b)

(c) (d)

Figure 3: (a) A guard located at P has no internal tangents andcovers the entire
domain. (b) Even though only one IntT can be drawn fromG1, one or more
guards are still required to cover the remaining region. (c)Unguarded scenario
for a domain requiring two guards (d) Full coverage obtainedby moving them
so that one guard lies on the IntT of the other.

For example, in the Figure 2(b), a guard placed at A will145

not see the curve portion counterclockwise from S to O due146

to the presence of an internal tangent. However, in the Figure147

3(a), a guard located at point P can see the entire region as no148

internal tangent can be drawn from the point to the curve. Foran149

intricate region within a curve (Figure 3(b)), only one internal150

tangent can be drawn from the guardG1. Nevertheless,G1 is151

still required to cover this region.152

Further it can beintuitively observed that, for a curved do-153

main requiring only two guards to cover it, the guards can be154

placed in such a way that one guard can see the other and the155

line segment connecting them is tangential to the curve. For156

example,let usinstead place two guards which do not see each157

other (Figure 3(c)), i.e. the line joining the guards intersects the158

boundary of the curve. By Proposition 1, there exists at least159

one internal tangent which can be drawn from each of them.160

Let the corresponding silhouette points beS1 andS2. The re-161

gion onC(t) lying betweenS1 and S2, if seen clockwise, is162

left unguarded. Now if these guards are moved so that their163

internal tangents become collinear (i.e. by placing one guard164

on the internal tangent of the other like in Figure 3(d)),S1 and165

S2 will coincide. As a consequence, there is no unguarded re-166

gion betweenS1 andS2 like in the previous case. Based on this167

intuition, we have the following rule:168

Rule 1. Let G1 2 D be a guard which does not see the entire169

domain. Another guard can be obtained by drawing an internal170

tangent from G1 and choosing a point on the internal tangent171

beyond its silhouette point.172

(a) (b)

Figure 4: A �gure showing two example curved domains. GuardsG1 andG2
have been placed, and a new candidate guardC1 lying on the IntT drawn from
G2 has been obtained. (a)C1 andS form an empty triangle withG1 (b) � C1SG1
intersects the curved boundary.

Rule 1 implies thatG2 in Figure 3(d), drawn as internal tan-173

gent fromG1, is able to see the silhouette point ofG1 and some174

region beyond it. Rule 1 can be applied repeatedly to �nd new175

guards to cover the domain. Section 4.1 later describes how to176

place new guards beyond the corresponding silhouette points.177

The algorithm in this paper involves the identi�cation of one178

guard as per this rule in each iteration, and hence this guardis179

termed as thesubsequentguard.180

While Rule 1 enables us to �nd subsequent guards, this rule181

alone is not su� cient to ensure termination of the algorithm in182

all cases.This is because, in curves which require more than183

one guard, every interior point has an internal tangent. Hence,184

regardless of where we place our �rst guard, we can keep �nd-185

ing new internal tangents (and thus new guards on them), lead-186

ing to a doubling back into already guarded regions.Hence,187

we add a further rule which enables us to cut down on possibly188

redundant candidates for the subsequent guard. This is based189

on theintuition that a subsequent guard placed on an internal190

tangent of an existing guardG may not be required when the191

region beyond the intT's silhouette point is already visible to192

another existing guard. For example, in Figure 4(a), letG1 and193

G2 be the current set of guards. LetG2C1 be an internal tan-194

gent drawn fromG2 andC1 be the subsequent guard obtained195

by Rule 1. SinceSC1 is visible to an existing guardG1, the196

new candidateC1 is not required in this case. So we propose197

the rule:198

Rule 2. Empty triangle property: An internal tangent drawn199

from an existing guard is considered for determining a subse-200

quent guard only if the triangles formed by its silhouette point201

S and occlusion point O with each of the remaining guards are202

not completely interior to the domain, i.e. given a set of exist-203

ing guardsG and an intT drawn from G1, no subsequent guards204

will be placed on intT if9Gi 2 GnG1 such that4(S OGi) � D .205

Such triangles which lie completely insideD are referred206

to asempty triangles. For example, the internal tangentG2C1207

forms an empty triangle� (SC1G1) with G1 in Fig. 4(a) and208

hence no guard be placed onG2C1. It can be seen thatG1 and209

G2 are su� cient to cover the domain. On the other hand, in Fig.210

4(b), where� (SC1G1) is not an empty triange, a guard atC1 is211

needed.212

De�nition 9. An internal tangent from a guard is called a valid213

internal tangent, and needs to be considered for determining214
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(a)

SO
� j

Gi

(b)

SO
� j

GiG1

Figure 5: Proof of Proposition 2 - repeated application of Rules 1 and 2 can
cover the entire domain.

subsequent guards, only if it satis�es the empty triangle prop-215

erty (Rule 2).216

Proposition 2. Given a domainD and an initial set of guards217

G, repeated application of Rule 1 and Rule 2 will eventually218

give a new set of guardsG0 which can cover the entire domain.219

Proof. Assume, on the contrary, that we have a set of guards220

G0 which do not fully guardD and that no subsequent guards221

can be added by Rule 1 because of Rule 2 (i.e. none of the222

existing guards have valid internal tangents). Letf� 1; � 2; : : :g223

be the set of disjoint components inD that are left unguarded224

by G0 (i.e. the union of shaded regions in Figure 5(a)). The225

guarded portion ofD adjacent to any� j must be guarded by226

some guardGi 2 G0 such that a part of the internal tangentT227

drawn fromGi to C(t) forms the boundary of� j (the segment228

S Oin Figure 5(a)). Since� j is unguarded,T must have been229

rejected as a valid internal tangent due to Rule 2, and hence it230

forms an empty triangle with some guard. Let this guard be231

G1, i.e. we haveS; O 2 V (G1). Because the domain is simply232

connected, the segmentS O 2 V (G1). SinceG1 can see any233

point onS O, it can also see some pointP lying onS Owhich is234

also a part of the boundary of� j . So9P not lying onC(t) such235

thatG1P can be extended to cross over into� j . This means that236

a point interior to� j is visible to the guardG1, which contradicts237

the assumption that� j is, in fact, unguarded.238

(a) (b)

Figure 6: Corollary 1: (a) A con�guration of guards such thatinternal tangents
intersect atI , (b) I is added to the guard set, andG j andGk are recomputed via
internal tangents fromI to give a new set of guards joined by non-intersecting
internal tangents.

Corollary 1. There exists a set of guards covering the entire239

domain such that every guard is connected to at least one other240

guard by a valid internal tangent, and the internal tangentsare241

non-intersecting except at their end points.242

Proof. Let us start with a set of guards which are connected243

by internal tangents such that some tangentGiG j intersects an-244

other tangent, sayGkGl at the pointI . Since we do not want245

intersections, we create a new guard atI . However, doing this246

means thatI is not connected via an internal tangent to one247

of the guards fromGi andG j , and one fromGk andGl (seg-248

mentsIG j and IGk in Figure 6(a) are no longer internal tan-249

gents). More precisely, if the silhouette point ofGiG j lies on250

the segmentGi I , Gi I remains an internal tangent andIG j is no251

longer one, and vice versa.252

This is a problem because we require the line segments join-253

ing all our guards to be internal tangents. To remedy this, we254

can delete such guards whose segments withI no longer form255

internal tangents, and their subgraphs, from the guard set.This256

will leave some part of the domain uncovered. Now, by Propo-257

sition 2, we have valid internal tangents which we can con-258

struct fromI to place new guards (G�
j andG�

k in Figure 6(b))259

until the domain is covered again. The empty triangle prop-260

erty is not broken at any point doing this construction and now261

have a set of guards covering the entire domain, joined by non-262

intersecting internal tangents.263

Proposition 3. Let G denote a planar graph with its vertices264

as guards and the edges as the internal tangents between the265

guards as obtained by Rule 1 and Rule 2. There exists at least266

one set of guards forming the vertex set ofG that can cover the267

entire domain such thatG forms a spanning tree [18].268

Proof. Once an initial guard is located (see Sections 4.1 and269

4.2), by Rule 1, we can draw internal tangents from the existing270

guard, where a subsequent guard is placed on one of the inter-271

nal tangents. This process can be repeated till the entire domain272

is covered (when there are some portions left uncovered, then273

there exists a valid IntT (Proposition 1 and Proposition 2) using274

which subsequent guards can be identi�ed). The graphG will275

not have a cycle because the only way of getting a cycle is by276

placing a subsequent guard at the same location as an existing277

guard, and that would contradict Rule 2 because both the sil-278

houette and occlusion point of the new guard will be visible to279

the existing guard. Further, every edge inG is disjoint except at280

its endpoints by Corollary 1. Moreover, the graph is connected281

as every guard has an edge to at least one another guard via an282

internal tangent. Hence the Proposition.283

Proposition 4. Let G be any set of guards that can cover the284

entire domainD . Let W be a set of visibility-disjoint witness285

points (refer De�nition 8) inD . For any G and W, we will286

always havejWj � jGj .287

Proof. We will prove this by contradiction. Assume that9W 2288

D such thatjWj > jGj. SinceG can see the entire domainD ,289

we have8Wi 2 W; 9G j 2 G such thatWi 2 V (G j). But since290

jWj > jGj, there exists at least one guard which can see two291

or more witness points because of the pigeonhole principle,i.e.292

9Gk such thatV (Gk) contains bothWm andWn for somemand293

n. However, this also means thatGk 2 V (Wm) andGk 2 V (Wn),294

which means thatV (Wm) \V (Wn) = Gk , � , which means that295
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(a) (b) (c)

(d) (e) (f)

C1

C2C3

C4

Figure 7: Demonstration of how the initial candidate guardsare obtained for two test examples. (a),(d): TwoC1-continuous curves; (b),(e): IPTs drawn from each
of them; (c), (f): The candidate guard set comprising of the points of intersection of IPTs with each other, or the occlusion points in case the IPTs are disjoint.

Wm andWn are not visibility-disjoint. This is a contradiction on296

the de�nition of a witness point.297

Corollary 2. jWj = jGj impliesG is the minimal set of guards298

required to cover the domain.299

As a result of this, we can say thatW is a lower bound on the300

number of guardsG and can give a measure of approximately301

how close the value ofjGj is to the optimum.302

3. Overview of the algorithm303

The algorithm starts by �nding a set of candidate guards304

derived from IPTs and their intersections (Section 4.1.1).Out305

of the candidate guards, one guard is chosen in each iteration306

based on maximum visibility (identi�ed using the number of307

internal tangents from the guard) and the �rst order approach308

followed in hidden Markov models [19] (Section 4.2). Identi-309

�cation of internal tangents, a local-based approach has been310

combined with a `look ahead' approach (local approaches have311

been shown to be working well in practise, see [16]). Though312

the `look ahead' can be adopted at any level, in this work, we313

have employed to one level, termed as `�rst order'. A graph314

structureG is initiated with the starting guard as a vertex and315

no edges at this juncture.316

In each iteration of the algorithm, the guard among all the317

existing guards which has the minimum number of valid inter-318

nal tangents (De�nition 9) is identi�ed (this is dealt in Section319

4.3) and will henceforth be referred to asanchor guardfor that320

iteration. The candidate guards for the next iteration are only321

chosen from points lying on the internal tangents of the anchor322

guard (see Section 4.1.2 for details). The subsequent guardis323

chosen from these candidates by using maximum visibility and324

the �rst order approach along with the empty triangle property325

(Section 4.2). The vertices inG are updated with the identi�ed326

guard and the edges are updated with the corresponding internal327

tangent joining the identi�ed guard and the anchor guard. The328

above procedure is repeated until no valid internal tangentcan329

be found from any of the guards in the graph. The algorithm330

then terminates.331

4. Algorithm details332

The algorithm consists of the following steps:333

� Finding a candidate set of guards.334

� Finding a subsequent guard from the set of candidate335

guards.336

� Picking the anchor guard from the guards in the graph.337

� Termination of the algorithm.338

4.1. Candidate guards339

4.1.1. Candidate set of guards at the start340

As there are no vertices in a given closed curve (Figure341

7(a)), the in�ection points present in the curve are used as refer-342

ence. IPTs are drawn from all the in�ection points till they in-343

tersect the curve at their occlusion points (Figure 7(b)). Points344

of intersection of the IPTs, when they intersect, and the occlu-345

sion points when they do not, are used as candidates for the �rst346

guard (Figure 7(c)). In another test example (Figure 7(d)),as all347

IPTs (Figure 7(e)) only intersect the curved boundary (the IPTs348

do not intersect among themselves), the corresponding occlu-349

sion points are chosen as candidate guards (Figure 7(f)).350

4.1.2. Candidate guards after identifying at least one guard351

An anchor guard is chosen from the existing guards (as per352

Section 4.3) and only thevalid internal tangents drawn from the353

anchor guard are used for �nding candidates for the subsequent354

guard. LetG be the anchor guard andGObe an internal tangent355

drawn fromG whose silhouette point isS. Clearly,G does not356

cover the entire domain because it has a valid internal tangent357

GO. As per Rule 1, another guard should lie somewhere on the358

line segmentS O. Hence, we consider the occlusion pointO359
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and the points of intersection of the IPTs with the line segment360

S Oas candidates for choosing the next guard.361

For example, in the Figure 8(a), the candidates for the tan-362

gentGO1 areC1, C2 andO1. In a similar manner, further can-363

didate guards such asC3, C4 andO2 can be obtained from the364

othervalid internal tangentGO2, as they lie beyond its silhou-365

ette points (S1 andS2 in the Figure 8(a)) fromG (do note that366

P1, P2, P3 andP4 have been excluded as they lie before the sil-367

houette points). Figure 8(b) shows the set of candidate guards.368

Though Proposition 1 only talks about points lying strictly369

interior to the domain, it holds good even when the candidate370

guard is a point on the boundaryC(t) if the point is convex,371

whereas it need not be true if the point is concave (De�nition2).372

For example, assume that we have a domain as shown in Figure373

8(c) and the guardG1 has been placed. This guard has only one374

valid internal tangent,G1o, and since no IPT intersects with it,375

the only candidate guard is the occlusion pointo. Placing the376

subsequent guard ato does not coverD fully, and since one377

cannot draw any further internal tangent fromo, the algorithm378

will terminate even thoughG1 and o do not cover the entire379

domain. This happens becauseo is concave. In practise, when a380

candidate guard is a concave point and no valid internal tangent381

can be drawn from that guard, a small perturbation towards the382

interior of the domain is made (such aso perturbed toG2 in383

Figure 8(c)) and this is added as the subsequent guard so that384

the algorithm does not halt prematurely.385

Though there is no hard and fast rule to select a set of can-386

didate guards, the procedure described here is similar to the387

one used in [16] from the algorithmsA2 andA11 that eventu-388

ally were proven to be a good candidate set. Description for389

determining candidate guards is shown in Algorithm 1.390

Algorithm 1 fCGg= CandGuards(G)
Input : An anchor guardG (NULL at the start).
Output : A set of candidate guardsfCGg.

1: Let P be the set of IPTs.
2: if G , NULL then
3: Find allvalid internal tangents fromG. Let the silhouette

points befSgand corresponding occlusion pointsfOg.
4: Candidate GuardsfCGg = fOg [ f Pi \ S jO jg, 8Pi 2 P,

8 j , i
5: else
6: Candidate GuardsfCGg= fOg [ f I jI = Pi \ P j8fPi ; P jg 2

P; j , ig
7: end if
8: return fCGg.

4.2. Selecting from the candidate guards - First order approach391

Once the candidates have been obtained, one needs to choose392

a guard among these and update the graphG accordingly. For393

this, the visibility of each candidate is determined by looking at394

internal tangents from it, as the presence of further valid internal395

tangents implies it cannot see part of the domain (Proposition396

1). It may be noted that the candidate guards themselves are397

arrived at by drawing internal tangents from an anchor guard.398

(a)

(b) (c)

Figure 8: (a) Candidate set of guards for the given curve. TheIPTs of the curve
are shown in grey and the internal tangents from the existingguardG are in
red, (b) The candidate guardsC1, C2, C3, C4, O1 andO2 obtained as per the
approach in 4.1.2. (c) Guard at concave segments.

Algorithm 2 G = S electTheGuard(fCGg)
Input : A set of candidate guardsfCGgobtained from the an-

chor guardGa (=NULL at the start).
Output : The chosen guardG� .

1: Let fCGg= fC1;C2; : : :g
2: for Each guardCi do
3: Draw the set of internal tangentsI from Ci .
4: if Ga , NULL then
5: for EachI j in I do
6: Let S j be the silhouette point andO j be the occlu-

sion point.
7: Let G be the vertex set ofG.
8: if 9g 2 G such that� (S jO jg) \ C (t) = � then
9: I = InI j.

10: end if
11: end for
12: end if
13: G1

� = fCi jCi has minimumjI jg.
14: Let G� be a random guard from the setG1

� .
15: end for
16: G = G [ (G� ; I i), whereI i is the internal tangent between

G� andGa (I i is NULL for the starting guard).
17: return G� .

Looking at the internal tangents from the candidate guards to399

choose the subsequent guard is akin to the �rst order approach400

typically followed in hidden Markov models [19]. Broadly, an401

nth order approach implies that the state at a predecessor level is402
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(a)
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(b)
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C2 C3
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(c)

G1

(d)

G1

G2

O1 O2

(e)
G2

C1

O1 C2 O2

(f)
G2

C2

(g)
G2

O2

(h)
G2

C1
S3

O3

(i)
G2

O1

Figure 9: Illustration of choosing a guard from a set of candidate guards. (a) From the candidates in �gure 7(c),G1 is chosen as a subsequent guard since it has no
internal tangents (and hence it also covers the entire domain). (b)-(c) Internal tangents are drawn from the candidate points obtained in Figure 7(f) andG1, having
only one valid internal tangent, is chosen. (d)-(e) An intermediate step in the algorithm where two guardsG1 andG2 have been obtained and new candidatesC1,
C2, O1, andO2 are obtained takingG2 as the anchor guard. Figures (f)-(i) show the internal tangents drawn from each of these candidate guards. Since all of them
form empty triangles withG2, they have no internal tangents and any can be chosen as the subsequent guard.C2 is chosen in this case.

arrived at after a prediction made atn successive levels. If only403

one successive level is employed, then it is termed as �rst-order404

approach.405

To select a guard from the candidate set, the number of valid406

internal tangents from each candidate guard is counted. Recall407

that a valid internal tangent should not form an `empty trian-408

gle' with any of the existing guards. Note that while choosing409

starting guard from the candidates obtained in Section 4.1.1,410

the empty triangle check is redundant because no guards exist411

at the start. So the guard with the minimum number of internal412

tangents is chosen as the starting guard. For example, Figure413

9(b) shows the candidate guards at the start of the algorithm414

and their internal tangents. All candidates but one (C1) have415

two internal tangents and henceC1 is used as the starting guard416

(G1 in Figures 9(c), 9(a) for the respective test examples in Fig-417

ures 7(d), 7(a)) and is added to the currently empty graphG.418

However, whenG is non-empty, one needs to check for the419

presence of empty triangles between an internal tangent and420

each of the existing guards. The number of valid internal tan-421

gents (De�nition 9) is counted for each candidate guard, and422

the one with the minimum number is picked as the subsequent423

guard. The graphG is then updated with this guard as a vertex424

and the internal tangent between the guard and its correspond-425

ing anchor guard as an edge.426

For example, given the anchor guardG2, the candidate guards427

are shown in Figure 9(e). Figures 9(f)-9(i) each shows internal428

tangents drawn from one of the four candidates. All the in-429

ternal tangents form empty triangles withG2, and hence each430

candidate guard has the same number of valid internal tangents,431

implying any of them can be chosen as the subsequent guard.432

For example, ifC2 is selected as the guard, thenC2 is added to433

the vertex set ofG and the internal tangentG2C2 is added to434

the edges. Algorithm 2 encodes the procedure for selecting a435

guard.436

4.3. Picking an anchor guard437

Next, an anchor guard needs to be picked among the guards438

currently inG. This is the guard from which internal tangents439

will be drawn to �nd candidates for the next iteration. A simple440

procedure is used to do this. All the valid internal tangents441
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(a)

G1

G2
(b)

G1

G2
(c)

G1

G2
(d)

G1

G2

G3

(e)

G1

G2

G3

Figure 10: (a)-(c) show how an anchor guard is picked from a guard set ofG1 andG2. (a) Existing guards, (b) Internal tangents drawn from eachof them (blue), (c)
The tangentG1G2 is not considered valid as it overlaps with an existing edge in G. Hence,G1 has zero intTs whileG2 has two.G2 is picked as the anchor guard.
(d)-(e) illustrate the picking of an anchor guard afterG3 is added to the guard set. (d) GuardsG1,G2 andG3 and the current graphG (e) The internal tangents drawn
from each of the guards (the ones which are not valid are shownin pink). G2 is picked as an anchor guard because it has least non-zero valid intTs.

(a) Candidate guards fromG2 (after the set
of guards obtained till Figure 10(e)).

G2

C3

O3

(b) Internal tangents from the candidate
guards.

C3

O3

(c) G4 is added to the graph.

G4

Figure 11: Finding the candidate guards fromG2 and choosing the subsequent one.

(a) From all the guards in the graph, no
guard is having a valid internal tangent.

G1

G2

G3G4

(b) Final graph (spanning tree) having four
guards covering the entire domain.

G1

G2

G3G4

(c) Guards with covering regions

G1

G2

G3G4

Figure 12: Termination of the algorithm.

from each of the guards inG are found (excluding the tangents442

forming edges inG). The guard with the minimum number443

of non-zero valid internal tangents is then picked as an anchor444

guard.445

Figure 10(a)-10(c) illustrate the �ow for the graph consist-446

ing of guardsG1 andG2, whereG2 gets picked as an anchor447

guard for �nding a subsequent guard. Figure 10(d)-10(e) show448

another instance of the graph from which an anchor guard has449

to be picked for further iteration. The internal tangents which450

are not valid, either because of the empty triangle propertyor451

because they overlap with existing edges in the graph, are in-452

dicated in pink. Algorithm 3 indicates the steps in picking an453

anchor guard from the current graph.454

4.4. Termination of the algorithm455

The algorithm terminates when no guard with non-zero num-456

ber of valid internal tangents is available as an anchor guard457

from the current graph, as it indicates that no internal tangents458

Algorithm 3 SG= PickAnchorGuard(G)
Input : Current vertex set (guards)G of G.
Output : NULL or an anchor guardGa from G.

1: Let I i be the set of valid internal tangents for eachGi 2 G.
2: if 8i; jI i j == 0 then
3: return NULL
4: else
5: return Ga with minimum non-zerojI i j.
6: end if

can be drawn from any of the guards in the graph, i.e. the cur-459

rent set of guards can see the entire domain. The terminationis460

encapsulated in Algorithm 3 itself.461

4.5. Illustration of the algorithm462

A high level description of the entire algorithm which re-463

turns the set of guards covering the domain having a curved464

boundary is given in Algorithm 4.465
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Algorithm 4 FindGuards(Curved DomainD)
1: Input: DomainD having a continuous curved boundary.
2: Output: G whose vertex set give the guards (VLs) cover-

ing D .
3: G = fg, i = 0
4: Find the set of candidate guards,CG =

CandGuards(NULL)
5: Select the guard fromCG, G1 = S electTheGuard(CG)

6: while (Ga=PickAnchorGuard(
nS

i=1
Gi)) , NULL do

7: Find the set of candidate guards,CG =
CandGuards(Ga)

8: Select the subsequent guard,Gi = S electTheGuard(CG)
9: i = i + 1

10: end while
11: return G

The illustration of the algorithm (Algorithm 4) uses the test466

example 2 (Figure 7(d)). The candidate guards are identi�ed467

using the intersection points of the IPTs and the occlusion point468

of an IPT, if it does not intersect any (Figures 7(e) and 7(f)).469

Using the �rst-order approach, the starting guard (G1) is then470

identi�ed (Figure 9(c)). GraphG is initiated with the guardG1471

with no edges.472

Since there is only one guard, this guard gets picked as the473

anchor guard for the next iteration. In the next iteration, can-474

didate guards are identi�ed by internal tangents drawn fromG1475

and using the �rst order approach,G2 is identi�ed as the subse-476

quent guard (Figure 10(a)).G is then updated with the vertex477

G2 and the edgeG1G2. Now, usingPickAnchorGuard(G1[ G2),478

amongG1 andG2, G2 is picked as the next anchor guard (Fig-479

ure 10(c)). FromG2, the set of candidate guards are identi�ed480

(Figure 9(e)) and following the �rst order approach and per-481

forming checks for valid internal tangents (Figures 9(f)-9(i)),482

guardG3 is added toG along with the internal tangent as the483

edge (Figure 10(d)). Then, amongG1, G2 andG3, G2 is picked484

as the next anchor guard (Figure 10(e)). Candidate guards from485

G2 and their further processing using �rst order approach is il-486

lustrated in Figure 11. BothC3 and O3 have no valid inter-487

nal tangents, soO3 is added asG4 to G with the internal tan-488

gent betweenG4 and its anchor guardG2 as the edge. After489

this, PickAnchorGuard(
4S

i=1
Gi) returns NULL, as no guard has490

a valid internal tangent (Figure 12(a)). Hence the algorithm491

terminates and returns the graphG (which essentially is a span-492

ning tree, Figure 12(b)). Figure 12(c) shows the coverage of493

each guard in dash-dot lines.494

4.6. Finding a set of witness points495

Unlike the guard set, the witness points need to be visibility496

disjoint. Since we want as many witness points as possible in497

order to estimate a good approximation ratio, they should be498

placed at regions which have low visibility. Thus, in�ection499

points, silhouette points of IntTs, and points on concave regions500

make for good candidates for witness points, as opposed to the501

Algorithm 5 FindWitnessPoints(Curved DomainD)
1: Input: DomainD having a continuous curved boundary.
2: Output: W consisting of witness points inside the domain

D .
3: W = fg; i = 0
4: Find the set of in�ection pointsI of C(t). Set the unvisited

in�ection points Irem = I .
5: Find the visibility regionsV (I ) for each in�ection point by

�nding its IPTs and IntTs.
6: while Irem , NULL do
7: Find the in�ection pointI � which is visible to least num-

ber of other in�ection points.
8: Select this as a witness point,W = W [ I � .
9: UpdateIrem = fI j I 2 I andI \ V (I � ) = � g

10: end while
11: for all w 2 W do
12: Find the occlusion points of IPTs and IntTs fromw, and

draw IntTs from each of them.
13: Look for silhouette points s such thatV (s) \ V (W) = �

and add s toW.
14: end for
15: return W

occlusion points of IPTs and points lying interior to the domain502

(which are good candidates for �nding the guards).503

Algorithm 5 describes the steps required for �nding witness504

points. A candidate-based �rst order approach is used wherein505

the in�ection point whose visibility regions intersect with the506

least number of other in�ection points is chosen as the starting507

witness point. A set of `unvisited in�ection points',Irem, con-508

taining the in�ection points which are visibility disjointwith509

every point in the witness set is maintained. This set servesas510

the candidate set for �nding new witness points. In each step,511

the point which can see least number of points inIrem is chosen512

as a witness point and the in�ection points visible to it are re-513

moved fromIrem. The process iterates until all in�ection points514

are visited, i.e. untilIrem becomes a null set.515

It can be noted that the witness points in the above proce-516

dure have been obtained solely from in�ection points. Hence,517

this will not give a good estimate in the case of curves having518

long spiral regions without in�ection points. In order to ac-519

count for these regions, internal tangents are drawn from the520

occlusion points of the IPTs and IntTs of each witness point.If521

any silhouette points of these IPTs and IntTs is also visibility522

disjoint from the existing witness points, it is added to theset523

of witness points.524

5. Results525

The developed algorithm has been implemented using the526

IRIT geometric kernel [20],which contains function for the527

computation of internal tangents, andin�ection, silhouette and528

occlusion points (for further details on such computations, please529

refer [8]). The curves used are represented using non uniform530

rational B-spline (NURBS) for the purpose of implementation,531

though the algorithm itself has no such restriction.532
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)

Figure 13: Results: Guards (shown in red dots), spanning tree (red dots with red lines), witness points (dots in dark blue).

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 14: Results: Guards (shown in red dots), spanning tree (red dots with red lines), witness points (dots in dark blue) for random shapes.

Fig. no. 13(a) 13(b) 13(c) 13(d) 13(e) 13(f) 13(g) 13(h) 13(i) 13(j) 13(k) 13(l) 13(m) 13(n) 13(o) 13(p) 13(q) 13(r)
NOG 1 2 3 5 2 2 3 2 2 4 3 4 4 5 6 6 4 6
WP 1 2 3 4 2 2 3 2 2 3 2 3 4 5 4 5 2 4
AR 1 1 1 1.25 1 1 1 1 1 1.33 1.5 1.33 1 1 1.5 1.2 2 1.5
Time(s) 4.11 4.47 3.49 5.5 3.9 7.98 5.01 8.88 4.7 4.02 7.53 8.4 5 8.54 8.88 8.85 7.54 7.5

Table 1: The number of guards (NOG), number of witness points(WP) for various curved shapes, AR (= NOG/WP) - Approximation ratio and Running Times (in
seconds) for curves in Figure 13.
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Fig. no. 14(a) 14(b) 14(c) 14(d) 14(e) 14(f) 14(g) 14(h)
NOG 5 5 6 3 5 3 5 5
WP 3 4 5 3 3 2 3 4
AR 1.67 1.25 1.2 1 1.67 1.5 1.67 1.25
Time(s) 7.98 11.17 18.95 5.57 10.18 5.73 11.59 14.8

Table 2: The number of guards (NOG), number of witness points(WP) for randomly generated curved shapes, AR (= NOG/WP) - Approximation ratio and Running
Times (in seconds) for curves in Figure 14.

Implementation results in Figure 13 indicate that the algo-533

rithm can handle a wide variety of curves, right from curves534

having a large number of in�ection points to those having very535

few. The tested shapes include typical used ones in visibility lo-536

cation problems such as star-shapes, comb-like objects, spirals537

etc. In general, depending on the characteristics of the shape,538

we can either have a larger number of guards than the number539

of in�ection points, or vice versa. For example, locally spiral-540

shaped objects (Figure 13(d)) have fewer in�ection points but541

require more number of guards. This scenario has been cap-542

tured by the algorithm (also see Figure 13(m) - 13(p)). On543

the other hand, star-shaped objects that have larger numberof544

in�ection points might require only one guard (Figure 13(a)).545

This has also been captured. Results for comb-like shapes are546

shown in Figures 13(b) and 13(c). Results for a combination of547

high curvature thinner and thicker regions are shown in Figures548

13(e) - 13(g). The algorithm has also produced guards for ob-549

jects that have low curvature regions in conjunction with higher550

ones in Figures 13(i) and 13(l). Guards for an object with a551

constricted passage is shown in Figure 13(k). The algorithm552

can also handle high curvature regions having di� erent widths553

(Figure 13(c)). The algorithm also captures scenarios where554

all the guards may lie interior to the curved boundary (Figure555

13(i), 13(q) and 13(r)). A few more results for randomly shaped556

curves having very sharp turns is shown in Figure 14. These557

results show that the algorithm can generate guards for di� er-558

ently con�gured curves. In both Figures 13 and 14, the outputs559

demonstrate that the guards form a spanning tree.560

5.1. Discussion561

5.1.1. On the optimal number of guards562

Let Ng be the number of guards returned by our algorithm.563

Let jWpj be the maximum cardinality visibility independent set564

(i.e., maximum number of witness points that one can deter-565

mine for a given curve). Then the ratioNg=jWpj can be said566

to estimate how close our algorithm's output is to the likely567

optimum [16]. Let this ratio be termed as approximation ra-568

tion (AR). Tables 1 and 2 show the number of guards, witness569

points andARfor the set of input curves in Figures 13 and 14570

respectively. In many of the inputs, the obtainedAR was 1,571

indicating the correspondingNg is optimal (Corollary 2). In572

few of the cases, theARwas 1.5 and in others, between 1 and573

1.67. In the worst case, the AR obtained was 2 (Figure 13(q)).574

Another point worth noting is that the maximum number of wit-575

ness points need not always be equal to the minimum number of576

guards (e.g. in Figure 13(q), there is no way of placing threeor577

more witness points whose visibility regions do not intersect),578

i.e. Wp is not necessarily a `tight' lower bound in all cases and579

at times, it may be less than the optimal number of guards. This580

might hence lead to a higher apparent approximation ratio than581

is actually the case. The algorithm has been tested on many582

cases such as star-shaped, coil-like, comb-like etc. typically583

used as worst-case scenarios in the visibility location problems.584

Based on the testing for a number of curves (other than the re-585

sults shown in Figures 13 and 14) and to be on the safer side, we586

can clearly say that theNg is not more than twice the optimal587

number and hence the following conjecture:588

Conjecture 1. For a given curved boundary, Ng � 2Nop, where589

Nop is the optimal number of guards.590

5.1.2. Comparison591

To the best of our knowledge, no algorithm seems to exist592

for the visibility location problem for a domain having a curved593

boundary with no explicit vertices. Placing the guard on the594

curved boundary has been addressed in [8] using a discretized595

approach with an exhaustive search and gives a conservative596

estimate (not optimal). Perhaps, we use only a subset of com-597

putations as that of [8]. We believe that our approach of using598

internal tangents characterizes the local shape and geometry of599

the domain well. Framework for visibility problems in [14] also600

use a discretization-based approach whereas the approach pro-601

vided in [15], apart from discretization, also uses one hundred602

guards as the initial set. Running time of the results on an intel603

core i5, 2.80GHz with a 4GB RAM are of the order of a few604

seconds, as indicated in Tables 1 and 2 (the running times of605

other works cannot be compared directly as the con�gurations606

are di� erent from those in this paper). As our running times607

are not too slow, it is a reasonable trade o� with discretization,608

which introduces gaps in visibility maps and hence not guaran-609

teeing 100% coverage [14] as opposed to 100% coverage as can610

be seen from the results in Figures 13 and 14. It can be noted611

that, in [8], the running times are of the order of a few seconds612

to over a minute on a modern PC. As our starting candidate613

guards include intersection of IPTs, our algorithm has the abil-614

ity to capture domains that are guarded by a single guard, which615

is not possible to achieve if the guards are only on the boundary616

(such as [8]), see Figure 1.617

Other literatures related to curved boundary such as [12, 13]618

use the explicit notion of vertices. It is not possible to compare619

with their results even after arti�cially adding vertices at in�ec-620

tion points and splitting the curve boundary into concave and621

convex segments. This is because [12] only considers polygons622

with edges which are eitherall piecewise convex orall piece-623

wise concave, and [13] is only restricted to curves where the624
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(a) (b)

Figure 15: (a) An example where straight line segments may lead to absence of
in�ection points; (b) A possible �x by adding the tangents atthe endpoints of
the straight line sections, if interior toC(t), to the list of IPTs (BE andDF).

edges between any two vertices are convex.625

5.1.3. Limitations626

One limitation of this algorithm is that the number of can-627

didate guards could be very large at the start, even though the628

curve might �nally require only a single guard. For example,629

Figure 7(c) has a few candidate guards at the start, where as630

only one guard is required to cover the entire domain (Fig-631

ure 13(a)). Also, ties obtained when multiple candidates have632

the same number of valid internal tangents are currently bro-633

ken randomly. A better method of breaking ties remains to be634

found. The input curves are assumed to beC1-continuous and635

hence algorithm does not handle curves with discontinuities. If636

there is a discontinuity such as a cusp, then there is no unique637

well-de�ned tangent at such a point, and hence the algorithm638

has to be suitably modi�ed to handle such cases.One possible639

direction to explore would be adding the segments of the tan-640

gents at each cusp that lie interior to the curve to the set of exist-641

ing IPTs at the start of the algorithm.Moreover, the algorithm642

cannot handle curves which contain straight line portionsif the643

straight line portions begin or end at what otherwise would have644

been in�ection points (such as segmentsAB andCD in Figure645

15(a)). It might be possible to address this by detecting straight646

line segments and adding the tangents drawn at their endpoints,647

if interior to the curve, to the set of IPTs (see Fig 15(b)).Also,648

an internal tangent with more than one tangent point will intro-649

duce more than one silhouette point and we have not handled650

this case.651

6. Conclusions and future work652

In this paper, an algorithm for visibility locations (guards)653

that can be interior/on the curved boundary has been developed654

and implemented. It has been proposed that the guards have655

to form a spanning tree that provides a near-optimal number of656

visibility locations. Using the witness points, it has beenshown657

that, in many of the tested cases, the algorithm results in opti-658

mal number of VLs. The results also enabled us to conjecture659

that the algorithm does not result in more than twice number of660

optimal VLs, as the approximation ratio was no more than 2.661

Results indicate that the algorithm is very amenable for imple-662

mentation.663

Future work would involve identifying ways for reducing664

the number of starting candidate guards. Another possible work665

is to employ the algorithm for a curved domain having holes (or666

obstacles) as well as to curved surfaces. Applications are also667

being looked at.668
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