
CAD-RAG: A multi-modal retrieval augmented framework
for user editable 3D CAD model generation

Ananthakrishnan A
Indian Institute of

Technology, Madras
India, 600036,

Chennai, Tamil Nadu
ananthu2014@gmail.com

Anush Bharathi
Madras Institute of

Technology
India, 600036,

Chennai, Tamil Nadu
anushbharathi2411

@gmail.com

Dharanivendhan V
Indian Institute of

Technology, Madras
India, 600036,

Chennai, Tamil Nadu
dharanivendhanv01

@gmail.com

Ramanathan
Muthuganapathy
Indian Institute of

Technology, Madras
India, 600036,

Chennai, Tamil Nadu
emry01@gmail.com

ABSTRACT
Computer-Aided Design (CAD) has revolutionized design and manufacturing by enabling precise, complex mod-
els in collaborative environments. While similar CAD models with application-specific modifications are often
required, designs are typically created from scratch due to challenges in retrieving existing models or generating
editable ones. Although parametric CAD modeling has advanced through deep generative approaches treating
CAD as a language task to generate user-editable designs, building truly scalable multi-modal datasets and net-
works tailored for 3D design tasks, particularly in engineering domains remains a significant challenge. Developing
such datasets, especially those incorporating images, point clouds and user-like text and hand-drawn sketches is
difficult as these modalities demand fine-grained geometric understanding and extensive human-in-the-loop evalu-
ations. While large foundational models like CLIP have improved cross-modal retrieval, they are primarily trained
on natural images and fail to capture the geometric and structural complexities inherent to CAD data.
In this paper, we propose a novel multi-modal pipeline for CAD command sequence generation using state-of-the-
art Vision-Language Models (VLMs). We introduce a unique multimodal CAD dataset comprising hand-drawn
sketches, CAD command sequences, images and basic text prompts. These modalities are integrated through
a Multi-modal Retrieval-Augmented Generation (MM-RAG) framework to enable user-editable CAD model re-
trieval and generation. Our RAG-based pipeline streamlines the CAD design process by enabling iterative, user-
guided model generation based on simple sketches or text queries. This approach aims to streamline CAD model
design by creating an advanced, end-to-end pipeline that supports design workflows. The dataset and code will be
made publicly available at: https://github.com/ananthu2014/cadrag.

Keywords
Computer Aided Design(CAD), 3D shape retrieval, Multi-modal dataset

1 INTRODUCTION
Computer-Aided Design (CAD) has been the torch-
bearer of modern design and manufacturing, transform-
ing traditional workflows with greater precision, pace
and efficiency. From small-scale 3D printed artifacts to
large machinery and systems, the need for high-quality
designs remains crucial. However, the development of
skilled designers continues to be essential, necessitat-
ing investments in training to ensure that individuals
are industry-ready to design using CAD software such
as SolidWorks, Fusion 360 and others. With the advent

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of deep learning and advanced architectures, significant
attention has been paid to data-driven approaches that
help designers create better designs, with a primary fo-
cus on 3D representation learning for retrieval and gen-
eration of CAD models [1].

Retrieval systems focus primarily on searching and lo-
cating relevant 3D shapes in large databases through se-
mantic/similarity matching. This includes point cloud-
based and image-based [2] approaches among others.
Given an input and a target modality, training aim to
bring similar models closer in the embedding space and
dissimilar ones farther apart. 3D model understand-
ing lies at the crux of this problem, where models are
trained to extract relevant features from the data and
align them within a shared embedding space [3, 4, 5].

Earlier, content-based retrieval (CBR) systems (where
relevant items are searched by analyzing their intrinsic
features) employed rule-based techniques such as Pois-
son histograms [6] and Histograms of Orientation [7].

Model Sketch Text Recall MAP
k=1 k=2 k=5 k=10 k=1 k=2 k=5 k=10

Ours (SBIR) × ✓ 7.94 10.42 17.37 26.05 7.94 9.18 10.93 13.12
Ours (TBIR) ✓ × 14.14 22.08 34.74 47.39 14.04 18.11 21.68 23.37

Ours (STBIR) ✓ ✓ 18.11 24.81 37.47 48.64 18.11 21.46 24.95 26.47
Table 1: Zero-shot (Baseline) performance for Sketch-based (SBIR), Text-based (TBIR) and Sketch-Text based
(STBIR) Image retrieval on our model measured by Recall and Mean Average Precision (MAP) at top-k retrieval
for 403 test samples of CAD-RAG dataset.

With the development of learning-based approaches,
useful features were extracted and learned from images,
videos, sketches, text, point clouds and more, further
advancing retrieval systems. Among these modalities,
sketches and text are the most practical for user queries,
particularly in the CAD domain, though point cloud
could also be considered.

Significant developments have been made in sketch-
based content retrieval, particularly in Sketch-Based
Image Retrieval (SBIR) methods which mostly uti-
lize dual-encoder Siamese networks to map a given
sketch to its corresponding image(s) [8]. A major
challenge in adopting this approach is the scarcity
of large sketch-based CAD datasets corresponding to
engineering shapes. Further, until the development of
large pre-trained CLIP-like models [9], using text as
a query was not feasible due to the unavailability of
datasets that correlate text queries with other modalities
to enable cross-modal retrieval.

Over the years, considerable attention has been directed
toward geometric deep learning due to advancements
in architectures capable of learning such complex
representations. Many studies have focused on learning
3D representations from discrete forms. ComplexGen
[10] reconstructs B-Rep models from point clouds,
Sketch2Mesh [11] generates meshes from sketches
while SDFusion [12] performs 3D reconstruction and
completion in the form of Signed Distance Functions
(SDFs) from multi-modal inputs such as images and
text. Although these advancements enhance user
control over the generation process, the resulting
parametric representations remain non-editable, which
is undesirable in a design workflow.

Further advances were introduced in DeepCAD [13],
enabling the sequential generation of user-editable
CAD models by treating modeling as a language-based
task. Models such as Point2Cyl [14], Free2CAD [15],
OpenECAD [16] and Text2CAD [17] support cross-
modal generation, improving user control and bringing
significant attention to parametric CAD generation.

With the advent of large models like CLIP [9], their ap-
plication in self-supervised learning and adaptation to
zero-shot downstream tasks has gained significant at-
tention [18]. However, these models were trained on
large-scale internet datasets, which differ significantly
from the CAD domain leading to reduced zero-shot per-

formance (see Table 1), particularly in text-to-image re-
trieval. This highlights the need for a comprehensive
text dataset tailored to CAD.

Furthermore, the results reveal that the fine-grained nu-
ances of engineering shapes make sketches a more ex-
pressive modality, achieving better performance com-
pared to textual queries. This reinforces the need for a
quality sketch dataset as well, one that mimics actual
user queries. Additionally, large foundational models
such as GPT [19] have demonstrated strong generaliza-
tion capabilities in zero- and few-shot tasks, especially
with retrieval-augmented generation (RAG) [20], sug-
gesting promising avenues for CAD applications.

Hence, in this paper, a multi-modal dataset integrating
text, point clouds, CAD command sequences, free-hand
sketches and images is introduced, created through a
combination of human-in-the-loop processes and deep
learning methodologies leveraging SOTA foundational
models for text and generative models for sketches.
Furthermore, a novel RAG-based network is proposed,
enabling sequential retrieval and refined generation of
user-editable CAD models from simple user prompts.
The entire pipeline is designed to be compute-efficient,
with training conducted on low-end GPUs such as the
NVIDIA RTX 3080 Ti and 4070 Ti.

The key contributions of this paper are:

• A one-of-its-kind multi-modal dataset, incorporat-
ing free hand-drawn sketches, command sequences,
images, point clouds and 3-level text prompts based
on DeepCAD[13].

• A novel multi-modal RAG pipeline, which is per-
haps the first work in the field that performs sequen-
tial retrieval and generation of user-editable engi-
neering/CAD shapes.

2 RELATED WORKS
2.1 CAD as a Language Task
Wu et al., in their work DeepCAD [13] proposed a
Transformer-based autoencoder for the sequential gen-
eration of CAD models, treating CAD design similarly
to a language task. To achieve this, a dataset was cre-
ated from the Sketch-and-Extrude subset of the ABC
Dataset [21] with a domain-specific language designed

for sequential modeling. This was further improved
by approaches such as Xiang Xu et al. [22, 23], which
demonstrated high quality generation over the former.

Figure 1: Samples from 403 hand-drawn sketches,
drawn by 3 sketchers just by looking at the model

Furthermore, user-editable CAD models have been
generated from point clouds [14], sequentially
drawn vector sketches [15], images [16] and text
prompts [17, 24], all utilizing the DeepCAD dataset.
While image-based generation was showcased in
OpenECAD [16], it relies on fine-tuned small Vision-
Language Models (VLMs) with limited context
windows and requires rendered images of CAD,
making it a lesser feasible option for user queries.

Text2CAD [17] utilized Qwen2-VL-14B and Qwen2.5-
72B-Instruct [25] to generate textual descriptions for
the models of DeepCAD dataset. Twenty CAD image
views per model, along with CAD operation sequences
extracted from metadata, were used as input. The gen-
eration process was performed on multiple A100 GPUs
over several days, requiring significant computational
resources and resulting in a dataset that is inferior to
ours which was created using SOTA VLM Gemini [26],
as discussed in a later section. Additionally, the dataset
was not publicly available at the time of our research.

2.2 Sketch and Text-based 3D Retrieval
Most research on sketch-based representation learning
has focused on the vector level [27, 28] due to the sparse
nature of pixel-level sketches and the unavailability of
large datasets, particularly in the engineering domain.
CADSketchNet [29] introduced a dataset having 58,000
sketches based on the MCB [30] dataset using Canny
edge detection. However, quality issues such as mim-
icking exact edges and including unwanted mesh lines
reduced its realism compared to user-drawn sketches,
even though attempts have been made to improve the
quality [31, 32]. Additionally, most existing works have
focused on supervised datasets, where the performance
is evaluated based on retrieval from the same class.

However, no prior work has explored text-based CAD
model retrieval due to the lack of large, high-quality
datasets. Most existing work primarily focuses on

CAD generation using deep generative models, as
discussed earlier. Multi-modal retrieval based on
freehand sketches and text prompts requires significant
attention, given its practical advantages for real-world
designers to search for relevant 3D models. Creating
such datasets requires substantial time and human in-
volvement, especially to build large-scale, human-like
collections suitable for unsupervised learning.

2.3 Point-Cloud representation learning

3D point clouds effectively represent CAD models by
capturing their full 3D structure in R3. Additionally,
real-world user queries can be performed using scanned
point clouds obtained from devices like LiDAR and Mi-
crosoft Kinect, making it a viable domain for users.
Models such as PointNet and DGCNN [4, 5] effectively
extract global and local features from point clouds and
can be adapted for downstream tasks.

Recently, multi-modal learning has gained traction, uti-
lizing large models to align different modalities such
as point clouds, text and images thereby facilitating
downstream tasks such as classification, retrieval and
segmentation [33, 34]. However, these models are
typically trained on generic supervised datasets like
ShapeNet [35] and ModelNet [36].

2.4 Retrieval-Augmented Generation

Retrieval Augmented Generation (RAG) enhances the
performance of LLMs by integrating relevant knowl-
edge during generation, improving factual accuracy and
access to necessary information [20]. Multi-Modal
RAG extends this framework by leveraging both tex-
tual and visual inputs to produce richer, context-aware
outputs with reduced hallucinations. Existing CAD se-
quence generation methods rely on large GPU train-
ing and dataset-specific representations, limiting scal-
ability. While recent approaches like OpenECAD [16]
demonstrate the benefits of foundational models such
as GPT [19] for few-shot generation, to the best of
our knowledge there are no existing works that utilize
Multi-Modal RAG for improving CAD generation.

3 DATASET CREATION

We used CAD models from the DeepCAD [13] dataset,
originally consisting of 178,238 models. After de-
duplication following the approach of Willis et al. [13],
137,004 unique models were obtained. These were
used to create a comprehensive dataset encompassing
freehand-drawn sketches, text captions, point clouds
and isometric images, integrated with CAD construc-
tion sequences from OpenECAD dataset [16].

Figure 2: The complete pipeline for data set creation: sketch (top) and text (bottom) with data samples showcasing
multi-modal prompts (right).

3.1 Image and Point cloud Data
Using the Python-based rendering tool VTK, different
views of the CAD models were rendered under ambi-
ent conditions from various isometric viewpoints. Af-
ter human inspection of random samples, two view-
points with directional cosines

(
− 1√

3
,− 1√

3
,− 1√

3

)
and(

1√
3
, 1√

3
,− 1√

3

)
were finalized to maximize model cov-

erage. Image hashing was further applied to remove
strict duplicate models from the dataset to some extent.
Further, the point cloud dataset was generated using
Trimesh, consisting of samples with 8,192 and 4,096
points obtained via Farthest Point Sampling (FPS), with
added noise to facilitate improved generalization.

3.2 Sketch Data
Creating a large-scale dataset of hand-drawn sketches
at scale of hundreds of thousands is extremely labor-
intensive and time-consuming. Given the absence of
existing large-scale sketch datasets, we utilized a deep
learning-based pipeline inspired by M. Li et al. [37]
and Simo-Serra et al. [38] for creating a larger dataset.

Specifically, the Photo-Sketching method [37] based on
Conditional GAN architecture was employed to gener-
ate pixel-level, human-like contour sketches from im-
ages. A fully convolutional neural network [38] was
then sequentially integrated into this pipeline to enable
rough cleanup and refinement of the sketches produced
by the initial GAN-based model.

For fine-tuning these models, 750 hand-drawn sketches
were manually created by roughly tracing over im-
ages of selected CAD models from the DeepCAD [13]
dataset. Three sketchers were employed for this task,
with each sketcher given a maximum of 25 seconds
per image. Diverse images across different views were
manually selected to capture the full data distribution.

After training and then generating sketches for the
entire image dataset, a human-in-the-loop review was
conducted, where each reviewer rated the sketches
as either ’Good’ or ’Bad’ based on reference images.
Models with incorrect view angles were removed.
The final dataset includes two sketches per model for
109,232 models (refer to Figure 2 (top)), with 27,772
sketches labeled as ’Bad Sketches’ and removed.

Additionally, 403 sketches were drawn solely by look-
ing at the models, creating a real-case test dataset that
avoids pixel-to-pixel correspondence with the original
rendered images and better mimics actual user input
(refer to Figure 1). Three sketchers were given a maxi-
mum of one minute per sketch.

3.3 Text Data
Text2CAD [17] and CADTranslator [39] employed
large VLMs and LLMs such as Qwen [25], Mistral [40]
and CoCa [41] to generate text prompts via image
captioning. In Text2CAD, four levels of captions,
from beginner to expert, were created with the process
demanding substantial computational resources.

Figure 3: Text-image similarity analysis using a pre-
trained CLIP model, comparing different types of cap-
tions to evaluate alignment with image representations.

To address these challenges, a cost-effective pipeline
is proposed, utilizing Gemini 1.5 Pro and Gemini 2.0
Flash [26], which are among the state-of-the-art VLMs
available. Unlike in Text2CAD, where a VLM is em-
ployed in the first stage and an LLM in the second,
a two-stage generation process using VLMs at both
stages is adopted in our approach.
Additionally, Gemini 1.5 Pro costs $0.10 per 1M input
tokens and $0.40 per 1M output tokens, making API-
based caption generation both computationally and eco-
nomically efficient thereby eliminating the need for
heavy compute resources. Instead of the 20 viewpoints
used by Text2CAD, only two isometric CAD images
were utilized, as the DeepCAD [13] models are pre-
dominantly symmetrical. Through careful prompt engi-
neering, captions were refined to be more human-like,
with special attention given to avoid unnecessary ex-
planations, ensuring that the prompts remained concise
yet detailed and avoiding references to terms such as
"CAD," "images," or color descriptions.

Since CLIP [9]-like models has a maximum token limit
of 77 for text input, care was taken to maintain a lower
average token count while preserving the geometric de-
tails. The overall procedure for text-data generation is
outlined as follows:

Level 1 (CAD-RAG Description): Preliminary de-
scriptions for the models were generated using Gemini-
1.5 Pro, where two isometric views per CAD model
were provided to the VLM along with a structured
prompt to generate the captions.

Level 2 (Instruction 1 and 2): To enhance complex
reasoning, the Gemini-2.0 Flash model was used. The
images, preliminary description and a revised prompt
were provided to generate three levels of captions: In-
struction 1 (Crisp), Instruction 2 (Elaborate) and a
set of keywords. To facilitate the accurate generation
of design instructions, CAD construction sequences,
along with dimensions were extracted from the Meta-
data/FeatureScript format of DeepCAD dataset mod-
els obtained from Onshape and incorporated with the
images and descriptions. Zero-shot image similarity
analysis using CLIP [9] demonstrated that the Level-1
description exhibited higher text-image similarity com-
pared to the other two caption levels, which will further
aid retrieval performance and was therefore utilized for
the training of our model. Figure 3 shows the compar-
ison between different caption levels based on average
token count and average zero-shot image-text similarity
evaluated on a pre-trained CLIP model.

Subsequently, the above dataset was integrated
with the CAD construction sequences proposed by
OpenECAD[16] to form the final dataset. Figure
2 depicts the entire pipeline of dataset creation and
showcases some excerpts from the dataset.

4 METHODOLOGY

Figure 4: Final Architecture of Sketch and Text-based
Image-Retrieval(STBIR)

The proposed framework, CAD-RAG, comprises two
parts: Retrieval and Generation. Based on user
prompts consisting of sketches (Si) and/or text (Ti), the
network retrieves the top-k ranked images (Ii) or point

Figure 5: Depiction of Symmetric Contrastive learning (InfoNCE) loss

clouds (Pi) of CAD models from the saved embeddings.
The corresponding CAD command sequences (CSi)
are stored as hash maps {I/Pi : CSi}, enabling retrieval
based on text or sketch queries. The best retrieval
method is selected based on experimental results and is
subsequently used to assist the generation process.
In the generation phase, the retrieved construction se-
quences serve as few-shot samples, which then com-
bined with user prompts to enable the VLM to gener-
ate the final refined model. Each training pair is repre-
sented as (Si ∪Ti, Ii/Pi : CSi).

4.1 Retrieval
Image-Based Retrieval:
The network architecture is shown in Figure 4. Given a
user query (sketch and/or text), the network uses vision
and/or text encoders to generate embeddings, which are
compared with those from a database of image embed-
dings that shares the same latent space. The most simi-
lar results are then retrieved, similar to a search engine.
Contrastive Learning with InfoNCE Loss:
Since the dataset is unlabeled, traditional triplet
loss requiring explicit positive and negative samples
based on class labels is not applicable. Instead, a
self-supervised learning approach was adopted using
an in-batch symmetric contrastive learning strategy,
following the Noise-Contrastive Estimation (InfoNCE)
loss formulation to align multimodal embeddings.
This loss encourages semantically similar samples
from different modalities to be mapped close to each
other in the embedding space, while keeping away the
dissimilar ones in the embedding space.
The InfoNCE loss is defined as:

LInfoNCE =− 1
N

N

∑
i=1

log
exp(sim(zi,z+i)/τ)

∑
N
j=1 exp(sim(zi,z j)/τ)

where zi and z+i denote the embeddings of a positive
pair, sim(·, ·) is the similarity function (e.g., cosine sim-
ilarity), and τ is a temperature hyperparameter control-
ling the distribution sharpness.

Each sample consists of a pair from two modalities,
such as (imagei, sketchi) or (imagei, texti), with i =
1,2, . . . ,N and batch size N. A batch thus includes posi-
tive pairs {(i1,s1),(i2,s2), . . . ,(iN ,sN)}, where ik and sk
are matched image and sketch embeddings.

During training, for a given anchor zi (e.g., embed-
ding of imagei), the corresponding positive is z+i (e.g.,
sketchi), and the remaining N − 1 sketch embeddings
{z j} j ̸=i serve as negatives. Hence, a batch yields N
positive and N(N−1) negative pairs. Self-pairing (e.g.,
imagei with imagei) is excluded from the loss. Figure 5
illustrates the loss computation.

The overall methodology is summarized as:

• Image Encoder: A Vision Transformer (ViT) [42]
extracts embeddings I f ∈ RN×di from images.

• Text/Sketch Encoder: A Transformer model
(BERT [43] or ViT [42]) extracts embeddings
Tf ∈ RN×dt , with di = dt .

• Similarity Computation: Pairwise cosine similari-
ties are computed and scaled by a learnable temper-
ature t as logits = IeT⊤

e × exp(t).

• Loss formulation: A symmetric cross-entropy loss
is applied over similarity logits, averaging losses
from both Image → Text/Sketch and Text/Sketch →
Image directions. Since cross-entropy operates row-
wise, symmetric training ensures balanced align-
ment across modalities and improves retrieval.

Using this, we propose a tri-modal loss function:

Ltotal = L (I,S)+L (I,T)+L (T,S)

where I, S, and T correspond to images, sketches and
text respectively. Each L term denotes the symmetric
InfoNCE loss computed between the respective pairs.

During inference, if the user query includes both
modalities, the features extracted from the text and
sketch encoders are averaged to obtain a unified
embedding in the common representation space.

Point Cloud-Based Retrieval:
Given a user query (sketch or text), the network en-
codes it using fine-tuned vision and text encoders and
retrieves the most similar embedded point cloud vector.

Sketch-based:

Figure 6: Final architecture of sketch-based point cloud
retrieval, which achieved the best performance among
all configurations.

The point cloud and sketch encoders are jointly fine-
tuned to align their embeddings in a shared latent space
using the symmetric InfoNCE loss. A projection layer
is added after the point cloud encoder to map features
to a common dimension. When using PointNet [4], a
feature transform loss is also applied to ensure affine
invariance and improve stability. Refer to Figure 6 for
the final architecture.

The total loss used during this stage is defined as:

L = L s−p
InfoNCE +L p−s

InfoNCE +LFT (1)

where L s−p
InfoNCE aligns the sketch embeddings with

point cloud embeddings, L p−s
InfoNCE enforces reverse

alignment from point clouds to sketches and LFT
denotes the feature transform regularization loss.

Text-based: Unlike the sketch modality, learning an
effective text-based retrieval system is more challeng-
ing due to the relatively limited information content in
text prompts, especially given the nuanced geometric
nature of engineering shapes. Moreover, the contour-
based sketch data exhibits higher visual quality and ge-
ometric fidelity, whereas the text descriptions tend to be
less descriptive and less structurally informative.

The best performing model was trained on three stages:

I: Training Point Cloud Auto-Encoder: A PointNet-
Mini [4] based auto-encoder is trained to reconstruct
input point clouds using Chamfer Distance as the loss:

L p−p
Chamfer = ∑

x∈P
min
y∈Q

∥x− y∥2 + ∑
y∈Q

min
x∈P

∥x− y∥2

where P and Q are the input and generated point clouds.

II: Training Text Encoder with frozen Point Cloud
module: The text encoder is trained while freezing the
point cloud encoder and decoder. The loss combines
Chamfer loss and symmetric InfoNCE alignment:

Lstage2 = L t−p
Chamfer +L t−p

InfoNCE +L p−t
InfoNCE

The Chamfer loss ensures accurate reconstruction of
the point cloud from the text embedding. Given the
text encoding, the decoder reconstructs the point cloud,
and the Chamfer loss is computed between the recon-
structed and original point clouds. Refer to Figure 7 for
the architecture of Stage I and II training.

III: Joint Fine-Tuning: Both text and point cloud en-
coders are fine-tuned jointly using symmetric InfoNCE
loss. This stage mirrors the architecture and training
setup used in sketch-based point cloud retrieval.

Lstage3 = L t−p
InfoNCE +L p−t

InfoNCE

During inference, the sketch/text query is encoded and
matched against the database of encoded point-cloud
embeddings and the most similar model is retrieved.

Figure 7: Overview of Stage I and II in text-based point
cloud retrieval. Different loss functions are applied at
each stage and denoted using I and/or II to indicate their
respective stages.

4.2 Generation of editable CAD models
The performance of models proposed in
OpenECAD [16] are used as the baseline for compar-
ison, where VLMs are trained using the methodology

Model Sketch Text Projection Frozen I/P Enc. Epochs Recall MAP
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

ViT B/16 - PointNet-Mini ✓ × ✓ ✓ 50 34.65 61.7 71.95 34.65 43.84 46.33
ViT B/16 - PointNet-Mini ✓ × ✓ × 50 71.55 90.5 94.3 71.55 78.1 79.19
ViT B/16 - PointNet-Mini ✓ × × × 50 70.35 90.5 95.25 70.35 77.58 78.78
ViT B/16 - PointNet ✓ × ✓ ✓ 50 46.55 73.15 82.5 46.55 55.73 57.99
ViT B/16 - PointNet ✓ × ✓ × 50 72.15 93.25 96.55 72.15 79.72 80.7
ViT B/16 - PointNet ✓ × × × 50 74 93.7 93.15 74 81.11 82.06
ViT B/16 - DGCNN ✓ × ✓ ✓ 50 57.5 84 90.55 57.5 66.42 68.27
ViT B/16 - DGCNN ✓ × ✓ × 50 77.45 94.05 97.4 77.45 83.36 84.28
ViT B/16 - DGCNN ✓ × × × 50 78.95 94.75 97.55 78.95 84.54 85.32
BERT - PointNet × ✓ ✓ ✓ 30 4.3 16.1 26.9 4.3 6.27 9.73
BERT - DGCNN × ✓ ✓ ✓ 30 5.2 16.8 27.6 5.2 9.06 10.47
BERT - PointNet-Mini × ✓ ✓ ✓ 50 + 30 + 30 6.5 18.2 28.4 6.5 10.49 11.42

Table 2: Performance comparison of various models on sketch/text-based point cloud retrieval on Validation data.
The table shows different configurations of input encoders and point cloud encoders, with performance evaluated
using MAP and Recall metrics at different k values. Best-performing models for each category are highlighted.

proposed in TinyLLaVA [44] to generate Python-level
CAD operation sequences from input CAD images.
However, their generalization to modalities such as
hand drawn sketches and text prompts is found to be
limited due to pretraining on different representation
and the absence of multi-modal context. Furthermore,
the Vision-Language Models VLMs) employed in
these models are constrained by relatively small con-
text windows (maximum 3072 tokens), often leading
to incomplete generations.

To address these limitations, the feasibility of a
Retrieval-Augmented Generation (RAG) framework
is explored. In this approach, the most similar CAD
construction sequence is retrieved based on user
prompts (sketch and/or text) and used to guide the
generation of an accurate CAD command sequence
using large foundational models without fine-tuning, as
illustrated in Figure 9. The CAD construction sequence
format follows that of OpenECAD [16]. Foundational
models such as GPT-4o Mini, Gemini-2.0 Flash, and
Gemini-1.5 Flash [26, 19] were employed, leveraging
their few-shot learning capabilities and large context
windows. The performance of the proposed approach
is compared against OpenECAD [16] models.

A structured template containing instructions on the
command sequence format and operations, along with
user prompts and the top-1 retrieved result (command
sequence) was provided as input to iteratively refine the
retrieved sequence and generate the desired one. In the
case of RAG, the top-1 result was used, whereas a ran-
dom model or no model was provided in the other case.

5 ABLATION STUDIES & RESULTS
5.1 Retrieval Performance:
Retrieval performance was studied for both image and
point cloud as targets, where input modalities included
freehand sketches and text prompts. A total of 10,000
models were randomly sampled from the dataset for
training and comparison studies. The train-validation
split was 9000-1000 and the 403 hand-drawn samples
and its corresponding text captions served as the test

set, which was not a part of the train-val data. Among
the three-level captions, the Level 1 description exhib-
ited better text-image similarity compared to the others
while also having a lower token count. Therefore, it
was used as the text data along with two sketches and
images per model for analysis (Refer to Figure 3).

For point cloud retrieval based on sketch or text,
BERT [43] was used as the text encoder in all ex-
periments, while ViT-B/16 [42] served as the sketch
encoder. The models were trained on two NVIDIA
RTX 3080 Ti GPUs for varying numbers of epochs.
DGCNN [5] models were trained with a batch size of
8, PointNet [4] with a batch size of 16 and PointNet-
Mini [4] with a batch size of 32, using the Adam
optimizer with a learning rate of 1 × 10−4 and 4096
points. Refer to Table 2 for the training configurations.

For image-based retrieval, a tri-modal InfoNCE loss
was used along with the AdamW optimizer and a cosine
annealing scheduler, with a learning rate of 2× 10−5

and a weight decay of 1×10−5. The model was trained
on an NVIDIA RTX 4070 Ti for 15 epochs. Some
sketch views were randomly dropped out during train-
ing to prevent over-fitting. These hyperparameters were
selected based on best practices established in CLIP [9].

Figure 8: Top-5 rank retrieval results for Sketch-
based (SBIR), Text-based (TBIR) and Sketch+Text-
Based Image Retrieval (STBIR) models.

Recall MAPModel Sketch Text k = 1 k = 5 k = 10 k = 1 k = 5 k = 10
ViT-Siamese (ViT-B/16) ✓ × 92.25 98.05 99.70 92.25 95.15 95.66

DenseNet - Siamese ✓ × 84.80 93.20 98.65 84.80 89.00 90.54
ResNet - Siamese ✓ × 83.05 91.65 97.50 83.05 87.35 89.05
CLIP- (ViT-B/32) × ✓ 43.95 56.15 71.35 43.95 50.05 54.28

Ours (STBIR) ✓ ✓ 92.70 97.00 99.40 92.70 94.25 94.95
ViT-Siamese (ViT-B/16) ✓ × 52.61 67.00 77.67 52.61 59.80 62.68

Ours (SBIR) ✓ × 62.78 85.61 93.05 62.78 71.91 72.93
Ours (TBIR) × ✓ 56.82 85.86 92.56 56.82 68.21 69.15

Ours (STBIR) + Lavg ✓ ✓ 75.93 86.85 95.29 75.93 81.39 83.05
Ours (STBIR) + Ltri-modal ✓ ✓ 77.92 96.28 98.26 77.92 85.45 85.71

Table 3: Performance comparison of various models on validation and test data. The first section represents results
on the validation set (contour sketches), while the last four rows indicate performance on the test set.

Performance was evaluated using Recall and Mean Av-
erage Precision (MAP) at top-k ranks (k = 1,5,10) on
validation data for point cloud retrieval and on both val-
idation and test sets for image retrieval. Recall@k mea-
sures the fraction of relevant CAD models retrieved in
the top k and MAP evaluates the quality of ranking by
averaging precision at each relevant retrieval position
across queries, providing a comprehensive assessment
of retrieval effectiveness. For multi-view sketches, met-
rics are counted only when the exact view is retrieved.

The best-performing models for text and sketch-based
point cloud retrieval were trained using a three-stage
and a single-stage pipeline respectively as described
earlier (see Figure 6 and Figure 7). For text-based re-
trieval, PointNet-Mini [4] outperformed PointNet [4]
and DGCNN [5], despite having fewer parameters, due
to the multi-stage training. For sketch-based retrieval,
the ViT-DGCNN model achieved the best performance.

Ablation studies revealed that projection layers im-
proved text-based retrieval but slightly degraded
sketch-based performance. Similarly, freezing the
input encoder benefited text-based, while fine-tuning
was more effective for sketch-based retrieval. Although
sketch-based results were good, the performance of
text-based retrieval remained notably poor.

The results suggest that the image-based retrieval
model performs significantly better than the point
cloud-based model, demonstrating stronger gener-
alization to real user queries and achieving higher
performance on the validation data in both MAP
and Recall. Experiments with sketch-only (SBIR),
text-only (TBIR) and combined sketch-text (STBIR)
inputs showed the best performance in the combined
case. An average loss Lavg, computed using symmetric
InfoNCE on averaged sketch and text embeddings
was also tested, but the tri-modal loss outperformed
it. Refer to Table 3. Figure 8 shows SBIR, TBIR, and
STBIR retrieval examples on the test set.

Furthermore, on the validation set, the ViT-Siamese
model was observed to perform slightly better than the

STBIR model at k = 5 and k = 10. This can be at-
tributed to the well-articulated contour sketch data in
the validation set, whereas the inclusion of relatively
weaker text descriptions slightly degraded retrieval per-
formance in the STBIR setup.

5.2 Generation:
Experiments were conducted using the Gemini-1.5-
Flash, Gemini-2.0-Flash [45], GPT-4o and GPT-4o
Mini [19] models with and without RAG. Prompts
were designed to focus the model’s attention on the ge-
ometry itself, as user inputs such as sketches and text in
this approach do not convey dimensional information.
The results were compared with the pre-trained version
of OpenECAD’s 3.1B model [16].

The test dataset prompts (sketch and text) were pro-
vided to the models along with the top-1 retrieved
Python-level API CAD construction sequence. The re-
trieval results were obtained using the best-performing
STBIR model. To prevent exact model matching and
better simulate real-world scenarios, retrieval was
performed from the 10,000-model dataset, which does
not include the exact models used for queries. Refer to
Figure 9 (left) for the complete RAG pipeline.

Accuracy calculations are performed based on
OpenECAD’s evaluation metrics [16], using curve
accuracy, loop accuracy and a weighted average score.
In addition, we used the median CLIP score to compare
the similarity between the generated models and the
ground-truth models [16].

Median CLIP Score: Measures the similarity between
the generated and the ground-truth CAD models. The
isometric views of the generated and ground truth mod-
els are rendered and the similarity score is computed
using a pre-trained CLIP [9] image encoder.

Curve Accuracy: (accc) Evaluates how well individ-
ual curves in the generated sketch match the reference,
based on type, order and connectivity. Computed as the
fraction of correctly generated curves.

Figure 9: Complete pipeline for CAD command sequence generation using RAG (left) and example results of
CAD generation using different models with and without RAG (right).

Loop Accuracy: (accl) Measures how accurately the
generated loops match the ground truth in count and
structure. Fully correct loops receive a score of 100;
otherwise, it is weighted based on curve accuracy.

Weighted Average Score (WAS): Combines exe-
cutability, curve accuracy, and loop accuracy to provide
an overall evaluation score, computed as:

WAS = 10e+45accc +5accl +
40
L

L

∑
i=1

(10si +90acci)

where e is executability, accc is curve accuracy, accl
is loop accuracy, L is the number of loops and si,acci
represent correctness and accuracy of the i-th loop.

The results shown in Table 4 indicate performance
improvements when the RAG approach was em-
ployed on Large Foundational Models compared to
OpenECAD [16] models, with particularly better
outcomes observed for Gemini-Flash-2.0. The median
CLIP score was not calculated for the OpenECAD
models because many of them were non-executable.

The models were tested under various scenarios to de-
termine the optimal setup. When RAG was not em-
ployed, performance was notably worse, particularly
when only the OpenECAD Python-API code operations
were provided as context. In such cases, the generated
outputs often failed to satisfy dimensional constraints,
as the sketch and text inputs lacked dimensional infor-
mations. Results improved when a random model was
supplied and further improved with the use of RAG.

The lower accuracy observed for OpenECAD 3.1B
compared to other VLMs can be attributed to its
relatively smaller size and pre-training on CAD im-
ages, leading to a lack of generalization to the sketch
domain. Additionally, the context window length of
the best-performing OpenECAD [16] model is limited
to 3072 tokens, resulting in token exhaustion during
RAG. This leads to incomplete and non-executable

CAD construction sequences and a lower weighted
average score. On the other hand, models such as
GPT and Gemini, which have larger context windows,
effectively attended to all input prompts and generated
results more efficiently without requiring fine-tuning.
Refer to Figure 9 (right) for the qualitative results with
and without RAG for a given model.

6 CONCLUSION & FUTURE WORK
We introduced a novel RAG pipe-line for generating
user-editable CAD models, leveraging an in-house de-
veloped multimodal dataset. We evaluated the proposed
approach using actual user prompts, confirming its ca-
pability to support accurate CAD generation through
effective retrieval. The hardware-friendly nature makes
it particularly suitable for widespread deployment on
consumer-grade PCs, enabling broader accessibility.

The model was developed and trained solely on the
DeepCAD [13] dataset, which comprises relatively
simpler models. Since training used contour sketches,
generalization to real hand-drawn sketches is limited.
While the text prompts were generated using state-of-
the-art VLMs, additional human refinement is needed
for full accuracy. Moreover, despite its advantages,
CAD command sequence generation is not a scalable
solution unlike retrieval, which can be extended to
various datasets and modalities. Therefore, greater
emphasis was placed on the latter.

Future work could explore fine-tuning smaller models
(SLMs) to enhance domain-specific performance. Few-
shot learning may offer improvements over the current
one-shot setup, and further ablation studies could refine
parameter choices, particularly in the generation stage.
Iterative generation with a feedback loop also holds po-
tential for improving accuracy. Additionally, expanding
the dataset by incorporating scanned point clouds and
more hand-drawn sketches would enhance its realism
and better reflect practical use cases.

Model RAG Sketch Text Curve Acc Loop Acc Weighted Avg Score Median Clip Score(%) (%) (%)
OpenECAD 3.1B × ✓ × 32.07 35.73 57.84 -
OpenECAD 3.1B ✓ ✓ × 38.59 40.69 38.75 -

GPT-4o-mini × ✓ ✓ 56.28 56.12 30.54 0.4462
GPT-4o-mini ✓ ✓ ✓ 60.54 65.94 53.01 0.5185

Gemini-1.5 Flash × ✓ ✓ 64.24 63.81 52.24 0.4531
Gemini-1.5 Flash ✓ ✓ ✓ 64.15 67.62 54.67 0.4618

Gemini-2.0 Flash (no sample) × ✓ ✓ 13.82 13.72 10.61 -
Gemini-2.0 Flash × ✓ ✓ 65.07 71.09 56.30 0.3899
Gemini-2.0 Flash ✓ ✓ ✓ 68.07 72.22 59.26 0.5753

Table 4: Performance comparison of our model with and without RAG, across sketch and text modalities with
OpenECAD [16]. The table includes curve accuracy, loop accuracy, and weighted average score (%) for test data.

7 REFERENCES
[1] Heidari, N. et al. Geometric deep learning for

computer-aided design: A survey. arXiv preprint
arXiv:2402.17695 (2024). URL https://
arxiv.org/abs/2402.17695.

[2] Su, H. et al. Multi-view convolutional neural
networks for 3d shape recognition (2015). URL
https://arxiv.org/abs/1505.00880.
1505.00880.

[3] Hamdi, A. et al. Mvtn: Multi-view transformation
network for 3d shape recognition (2021). URL
https://arxiv.org/abs/2011.13244.
2011.13244.

[4] Qi, C. R. et al. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In
Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR)
(2017).

[5] Wang, Y. et al. Dynamic graph cnn for learning
on point clouds. ACM Transactions on Graphics
(2019). URL https://doi.org/10.1145/
3326362.

[6] Pan, X. et al. 3d shape retrieval by
poisson histogram. Pattern Recogni-
tion Letters (2011). URL https://
www.sciencedirect.com/science/
article/pii/S0167865511000055.

[7] Yoon, S. M. et al. 3d model retrieval using the
histogram of orientation of suggestive contours.
In Advances in Visual Computing (2011).

[8] Wang, F. et al. Sketch-based 3d shape retrieval
using convolutional neural networks (2015). URL
https://arxiv.org/abs/1504.03504.
1504.03504.

[9] Radford, A. et al. Learning transferable vi-
sual models from natural language supervision
(2021). URL https://arxiv.org/abs/
2103.00020. 2103.00020.

[10] Guo, H. et al. Complexgen: Cad reconstruction
by b-rep chain complex generation (2022). URL
https://arxiv.org/abs/2205.14573.
2205.14573.

[11] Guillard, B. et al. Sketch2mesh: Reconstructing

and editing 3d shapes from sketches (2021). URL
https://arxiv.org/abs/2104.00482.
2104.00482.

[12] Cheng, Y.-C. et al. Sdfusion: Multimodal 3d
shape completion, reconstruction, and generation
(2023). URL https://arxiv.org/abs/
2212.04493. 2212.04493.

[13] Wu, R. et al. Deepcad: A deep generative network
for computer-aided design models (2021). URL
https://arxiv.org/abs/2105.09492.
2105.09492.

[14] Uy, M. A. et al. Point2cyl: Reverse engineer-
ing 3d objects from point clouds to extrusion
cylinders (2022). URL https://arxiv.org/
abs/2112.09329. 2112.09329.

[15] Li, C. et al. Free2cad: Parsing freehand draw-
ings into cad commands. ACM Transactions on
Graphics (2022). URL https://doi.org/
10.1145/3528223.3530133.

[16] Yuan, Z. et al. Openecad: An efficient visual
language model for editable 3d-cad design. Com-
puters & Graphics (2024). URL https://doi.
org/10.1016/j.cag.2024.104048.

[17] Khan, M. S. et al. Text2cad: Generating sequen-
tial cad models from beginner-to-expert level text
prompts (2024). URL https://arxiv.org/
abs/2409.17106. 2409.17106.

[18] Lin, F. et al. Zero-shot everything sketch-
based image retrieval, and in explainable style
(2023). URL https://arxiv.org/abs/
2303.14348. 2303.14348.

[19] OpenAI et al. Gpt-4 technical report (2024). URL
https://arxiv.org/abs/2303.08774.
2303.08774.

[20] Lewis, P. et al. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In Proceed-
ings of the 34th International Conference on Neu-
ral Information Processing Systems (NeurIPS)
(2020).

[21] Koch, S. et al. Abc: A big cad model dataset for
geometric deep learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR) (2019).

[22] Xu, X. et al. Skexgen: Autoregressive generation
of cad construction sequences with disentangled
codebooks (2022). URL https://arxiv.
org/abs/2207.04632. 2207.04632.

[23] Xu, X. et al. Hierarchical neural coding for con-
trollable cad model generation. arXiv preprint
arXiv:2307.00149 (2023).

[24] Badagabettu, A. et al. Query2cad: Generat-
ing cad models using natural language queries
(2024). URL https://arxiv.org/abs/
2406.00144. 2406.00144.

[25] Qwen et al. Qwen2.5 technical report (2025).
URL https://arxiv.org/abs/2412.
15115. 2412.15115.

[26] Team, G. et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context (2024). URL https://arxiv.org/
abs/2403.05530. 2403.05530.

[27] Bhunia, A. K. et al. Vectorization and rasteri-
zation: Self-supervised learning for sketch and
handwriting (2021). URL https://arxiv.
org/abs/2103.13716. 2103.13716.

[28] Lin, H. et al. Sketch-bert: Learning sketch bidi-
rectional encoder representation from transform-
ers by self-supervised learning of sketch gestalt
(2020). URL https://arxiv.org/abs/
2005.09159. 2005.09159.

[29] Manda, B. et al. CADSketchNet - an annotated
sketch dataset for 3d cad model retrieval with
deep neural networks. Computers & Graphics
(2021). URL https://doi.org/10.1016/
j.cag.2021.07.001.

[30] Kim, S. et al. A large-scale annotated mechani-
cal components benchmark for classification and
retrieval tasks with deep neural networks. In Pro-
ceedings of the 16th European Conference on
Computer Vision (ECCV) (2020).

[31] Kosalaraman, K. K. et al. Sketchclean-
gan: A generative network to enhance
and correct query sketches for improving
3d cad model retrieval systems. Comput-
ers & Graphics (2024). URL https:
//www.sciencedirect.com/science/
article/pii/S0097849324001353.

[32] Kendre, P. P. et al. Sketchcadgan: A gener-
ative approach for completing partially drawn
query sketches of engineering shapes to en-
hance retrieval system performance. Com-
puters & Graphics (2023). URL https:
//www.sciencedirect.com/science/
article/pii/S0097849323001243.

[33] Tang, Y. et al. Minigpt-3d: Efficiently aligning
3d point clouds with large language models using
2d priors (2024). URL https://arxiv.org/

abs/2405.01413. 2405.01413.
[34] Xue, L. et al. Ulip: Learning a unified rep-

resentation of language, images, and point
clouds for 3d understanding (2023). URL
https://arxiv.org/abs/2212.05171.
2212.05171.

[35] Wu, Z. et al. 3d shapenets: A deep repre-
sentation for volumetric shapes (2015). URL
https://arxiv.org/abs/1406.5670.
1406.5670.

[36] Fang, Z. et al. Modelnet-o: A large-scale syn-
thetic dataset for occlusion-aware point cloud
classification (2024). URL https://arxiv.
org/abs/2401.08210. 2401.08210.

[37] Li, M. et al. Photo-sketching: Inferring con-
tour drawings from images (2019). URL
https://arxiv.org/abs/1901.00542.
1901.00542.

[38] Simo-Serra, E. et al. Learning to simplify: Fully
convolutional networks for rough sketch cleanup.
ACM Transactions on Graphics (2016). URL
https://doi.org/10.1145/2897824.
2925972.

[39] Li, X. et al. Cad translator: An effective drive
for text to 3d parametric computer-aided design
generative modeling. In Proceedings of the 32nd
ACM International Conference on Multimedia
(2024). URL https://doi.org/10.1145/
3664647.3681549.

[40] Jiang, A. Q. et al. Mistral 7b (2023). URL
https://arxiv.org/abs/2310.06825.
2310.06825.

[41] Yu, J. et al. Coca: Contrastive captioners are
image-text foundation models (2022). URL
https://arxiv.org/abs/2205.01917.
2205.01917.

[42] Dosovitskiy, A. et al. An image is worth 16x16
words: Transformers for image recognition at
scale (2021). URL https://arxiv.org/
abs/2010.11929. 2010.11929.

[43] Devlin, J. et al. Bert: Pre-training of deep bidi-
rectional transformers for language understanding
(2019). URL https://arxiv.org/abs/
1810.04805. 1810.04805.

[44] Zhou, B. et al. Tinyllava: A framework of small-
scale large multimodal models (2024). URL
https://arxiv.org/abs/2402.14289.
2402.14289.

[45] Team, G. et al. Gemma: Open models based
on gemini research and technology (2024). URL
https://arxiv.org/abs/2403.08295.
2403.08295.

